首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many activities the knee joint flexes and extends actively with the involvement of both knee extensor and flexor muscle groups. Consequently the examination of the muscle activity during reciprocal movements may provide useful information on the function of these two muscle groups during fatigued conditions. Therefore, the purpose of this study was to examine the activity of antagonist muscles during a reciprocal isokinetic fatigue test of the knee extensors and flexors. Fifteen healthy pubertal males (age 13.8+/-0.8 years) performed 22 maximal isokinetic concentric efforts of the knee extensors at 60 degrees s(-1). The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) was recorded using surface electrodes. The motion ranged from 100 to 0 degrees of knee flexion. The average moment and average EMG (AEMG) at 10-30 degrees, 31-50 degrees, 51-70 degrees and 71-90 degrees angular position intervals were calculated for each repetition. Twenty efforts were further analyzed. Two-way repeated measures analysis of variance (ANOVA) tests indicated a significant decline of moment during the test (p<0.025). The VM and VL AEMG at longer muscle lengths increased significantly as the test progressed whereas the AEMG at short muscle lengths (10-30 degrees ) did not significantly change. The agonist AEMG of BF during the first repetition demonstrated a significant increase after the ninth repetition (p<0.025). The antagonist AEMG of all muscles did not change significantly during the test. These results indicate that there is consistent antagonist activity during both extension and flexion phases of an isokinetic reciprocal fatigue test. It can be concluded that during an isokinetic reciprocal fatigue test, both knee extensors and flexors are fatigued. However, this condition does not have a significant effect on the EMG patterns of these muscles when acting as antagonists during the test.  相似文献   

2.
AIM: This study examined the electromyographic (EMG) activity of knee extensor agonists and a knee extensor antagonist muscle during fatiguing isometric extensions across a range of force levels. METHODS: Five female subjects performed isometric knee extensions at 25%, 50%, 75% and 100% of their maximal voluntary contraction (MVC) with the knee flexed to 75 degrees. Surface EMG (SEMG) was recorded with bipolar electrodes from the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF) and the root-mean-squared (RMS) amplitude and the percentage frequency compression of these recordings were calculated. Commonality and cross talk between recordings were also examined. RESULTS: Cross talk between recordings was deemed negligible despite significant levels of commonality between the agonist and antagonist SEMG, which was attributed to common drive. SEMG RMS amplitude increased significantly for all muscles during the 25%, 50%, 75% MVC knee extensions until task failure, and decreased significantly for 100% MVC. The frequency spectrum of the SEMG compressed significantly for all muscles and % MVC levels. The VM, VL and BF SEMG recordings responded similarly to fatigue. The RF's frequency spectrum compressed to a significantly higher degree. CONCLUSIONS: The VM, VL, RF, and BF fatigue in parallel, with high similarity between VM, VL and BF, giving support to the concept of a shared agonist-antagonist motoneuron pool.  相似文献   

3.
This study aimed to analyze the effects of the contraction mode (isotonic vs. isokinetic concentric conditions), the joint angle and the investigated muscle on agonist muscle activity and antagonist muscle co-activity during standardized knee extensions. Twelve healthy adult subjects performed three sets of isotonic knee extensions at 40% of their maximal voluntary isometric torque followed by three sets of maximal isokinetic knee extensions on an isokinetic dynamometer. For each set, the mean angular velocity and the total external amount of work performed were standardized during the two contraction modes. Surface electromyographic activity of vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), semitendinosus (ST) and biceps femoris (BF) muscles was recorded. Root mean square values were then calculated for each 10° between 85° and 45° of knee extension (0° = horizontal position). Results show that agonist muscle activity and antagonist muscle co-activity levels are significantly greater in isotonic mode compared to isokinetic mode. Quadriceps activity and hamstrings co-activity are significantly lower at knee extended position in both contraction modes. Considering agonist muscles, VL reveals a specific pattern of activity compared to VM and RF; whereas considering hamstring muscles, BF shows a significantly higher co-activity than ST in both contraction modes. Results of this study confirmed our hypothesis that higher quadriceps activity is required during isotonic movements compared to isokinetic movements leading to a higher hamstrings co-activity.  相似文献   

4.
Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30 degrees x s(-1). The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.  相似文献   

5.
The purpose of this study was to compare different normalization methods of electromyographic (EMG) activity of antagonists during isokinetic eccentric and concentric knee movements. Twelve women performed three maximum knee extensions and flexions isometrically and at isokinetic concentric and eccentric angular velocities of 30 °·s−1, 90 °·s−1, 120 °·s−1 and 150 °·s−1. The EMG activity of the vastus lateralis, rectus femoris, vastus medialis and hamstrings was recorded. The antagonist integrated IEMG values were normalized relative to the EMG of the same muscle during an isometric maximal action (static method). The values were also expressed as a percentage of the EMG activity of the same muscle, at the same angle, angular velocity and muscle action (dynamic method) when the muscle was acting as an agonist. Three-way analysis of variance (ANOVA) designs indicated significantly greater IEMG normalized with the dynamic method compared to the EMG derived using the static method (P < 0.05). These differences were more evident at concentric angular velocities and at the first and last 20 ° of the movement. The present findings demonstrate that the method of normalization significantly influences the conclusions on antagonistic activity during isokinetic maximum voluntary efforts. The dynamic method of normalization is more appropriate because it considers the effects of muscle action, muscle length and angular velocity on antagonist IEMG.  相似文献   

6.
Examination of the effects of fatigue on antagonist function can provide information on the role of antagonists in limiting the resultant joint moment and stabilizing the knee. Therefore, the purpose of this study was to examine the moment, agonist and antagonist electromyographic (EMG) activity levels at different angular positions during an isokinetic muscular endurance knee extension test. Fifteen healthy males (age 22.6+/-1.9 yr) performed 34 maximal isokinetic concentric efforts of the knee extensors at 120 degrees s(-1). The EMG activity of vastus medialis and biceps femoris was recorded using surface electrodes. The motion ranged from 90 degrees to 0 degrees of knee flexion. The average moment and average EMG (AEMG) at 10-35 degrees, 36-55 degrees and 56-80 degrees angular position intervals were calculated for each repetition. Twenty eight efforts were further analysed. The moment of force demonstrated a decline of 70% at the end of the test. Two-way repeated measures analysis of variance tests indicated that this decline was significant (p < 0.05). No significant effects of angular position on fatigue moment characteristics were found. The agonist (vastus medialis) AEMG during the first repetition demonstrated a significant increase of 40-60% towards the middle part of the test (p < 0.05). In the second part of the test, the VM AEMG at longer muscle lengths was significantly higher compared to the initial efforts whereas the AEMG at short muscle lengths returned to initial values. The antagonist AEMG at all angular positions did not change significantly during the test. The decline in the resultant joint moment could be attributed to the effects of fatigue on the agonist muscle function. The agonist AEMG fatigue-patterns are dependent on the length of the muscle and may be due to alterations in the motor unit recruitment and/or activation failure in the quadriceps muscle. The biceps femoris maintains constant submaximal (21-33% of the maximum) AEMG activity which may play an important role in the stability of the knee joint. The contribution of antagonist activity to the resultant joint moment increases during the last part of an isokinetic concentric muscle endurance test.  相似文献   

7.
The purpose of this study was to examine the influence of maximal strength capacity on muscle activation, during cycling, at three selected cadences: a low cadence (50 rpm), a high cadence (110 rpm) and the freely chosen cadence (FCC). Two groups of trained cyclists were selected on the basis of the different maximal isokinetic voluntary contraction values (MVCi) of their lower extremity muscles as follow: Fmin (lower MVCi group) and Fmax (higher MVCi group). All subjects performed three 4-min cycling exercises at a power output corresponding to 80% of the ventilatory threshold under the three cadences. Neuromuscular activity of vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF) was studied quantitatively (integrated electromyography, IEMG) and qualitatively (timing of muscle bursts during crank cycle). Cadence effects were observed on the EMG activity of VL muscle and on the burst onset of the BF, VL and RF muscles. A greater normalized EMG activity of VL muscle was observed for the Fmin group than the Fmax group at all cadences (respectively Fmin vs. Fmax at 50 rpm: 17 ± 5% vs. 38 ± 6%, FCC: 22 ± 7% vs. 44 ± 5% and 110 rpm: 21 ± 6% vs. 45 ± 6%). At FCC and 110 rpm, the burst onset of BF and RF muscles of the Fmax group started earlier in the crank cycle than the Fmin group These results indicate that in addition to the cadence, the maximal strength capacity influences the lower extremity muscular activity during cycling.  相似文献   

8.
The effect of movement velocity and fatigue on the reciprocal coactivation of the quadriceps and hamstrings was investigated through analysis of the root mean square (RMS) and the median frequency (MDF) of surface electromyography for the vastus medialis (VM), vastus lateralis (VL), medial hamstrings (MH) and biceps femoris (BF). Fourteen subjects performed six continuous isokinetic knee extension and flexion movements at 60 degrees, 180 degrees and 300 degrees s(-1), and 30 continuous movements at 300 degrees s(-1) to examine muscular fatigue patterns. Statistical analyses revealed that the RMS activity of the VM displayed greater coactivation than the VL (P<0.01) and the BF displayed greater coactivation than the MH (P<0.0001). There was no effect of velocity on the coactivation levels of the VM, the VL, or the MH; however, there was an effect of velocity on the coactivation levels of the BF (P<0.0001). Relative to MDF activity, the MH shifted upward as velocity increased (P<0. 01) while the BF decreased between 180 and 300 degrees s(-1) (P<0. 01). Results of the muscular fatigue test indicated that the RMS activity of the VM showed a higher degree of coactivation than the VL (P<0.01) and the BF showed approximately three times the coactivation level of the MH (P<0.001). The MDF of the VL and MH shifted downward as the repetitions progressed (P<0.01) with no changes for the VM or for the BF. Results of this study suggest that during isokinetic testing, both the VM and BF have significantly greater reciprocal coactivation levels when compared to the VL and MH, respectively. In addition, these results suggest that motor unit recruitment patterns of the VM and VL and the MH and BF differ with regard to the effects of velocity and fatigue.  相似文献   

9.
The purpose of this study was to examine the responses of peak torque (PT), mean power output (MP), mechanomyographic (MMG) and electromyographic (EMG) amplitudes, and mean power frequencies (MPFs) of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) in men and women during dynamic muscle actions. Twelve women (mean +/- SD age = 22 +/- 3 years) and 11 men (22 +/- 3 years) performed maximal, concentric, isokinetic leg extensions at velocities of 60, 120, 180, 240, and 300 degrees x s(-1) on a Cybex 6000 dynamometer. Piezoelectric MMG-recording sensors and bipolar surface EMG electrodes were placed over the VL, RF, and VM muscles. No sex-related differences were found among the velocity-related patterns for PT, MP, MMG amplitude, MMG MPF, or EMG MPF. There were, however, sex-related differences in the patterns of EMG amplitude across velocity. The results indicated similar velocity-related patterns of increase of MP and MMG amplitude for all 3 muscles and of EMG amplitude for the VL and VM in the women. Velocity-related decreases (p 0.05) across velocity. MMG MPF increased (p < or = 0.05) only between 240 and 300 degrees x s(-1). Overall, these findings suggested that there were sex- and muscle-specific, velocity-related differences in the associations among motor unit activation strategies (EMG amplitude and MPF) and the mechanical aspects of muscular activity (MMG amplitude and MPF). With additional examination and validation, however, MMG may prove useful to practitioners for monitoring training-induced changes in muscle power output.  相似文献   

10.
BackgroundAgonist and antagonist co-activation plays an important role for stabilizing the knee joint, especially after fatigue. However, whether selective fatigue of agonists or antagonist muscles would cause different changes in muscle activation patterns is unknown.HypothesisKnee extension fatigue would have a higher influence on landing biomechanics compared with a knee flexion protocol.Study designRepeated-measures design.MethodsTwenty healthy subjects (10 males and 10 females) performed two sets of repeated maximal isokinetic concentric efforts of the knee extensors (KE) at 120° s?1 until they could no longer consistently produce 30% of maximum torque. On a separate day, a similar knee flexion (KF) fatigue protocol was also performed. Single leg landings from 30 cm drop height were performed before, in the middle and after the end of the fatigue test. The mean normalized electromyographic (EMG) signal of the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF) and gastrocnemius (GAS) at selected landing phases were determined before, during and after fatigue. Quadriceps:hamstrings (Q:H) EMG ratio as well as sagittal hip and knee angles and vertical ground reaction force (GRF) were also recorded.ResultsTwo-way analysis of variance designs showed that KE fatigue resulted in significantly lower GRF and higher knee flexion angles at initial contact while maximum hip and knee flexion also increased (p < 0.05). This was accompanied by a significant decline of BF EMG, unaltered EMG of vastii and GAS muscles and increased Q:H ratio. In contrast, KF fatigue had no effects on vGRFs but it was accompanied by increased activation of VM, BF and GAS while the Q:H increased during before landing and decreased after impact.ConclusionFatigue responses during landing are highly dependent on the muscle which is fatigued.  相似文献   

11.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

12.
The purpose of this study was to investigate the neuromuscular efficiency of women with knee osteoarthritis (OA) when performing a sit-to-stand movement and during maximum strength efforts. Twelve women with unilateral knee OA (age 60.33 ± 6.66 years, height 1.61 ± 0.05 m, mass 77.08 ± 9.2 kg) and 11 controls (age 56.54 ± 5.46 years, height 1.64 ± 0.05 m, mass 77.36 ± 13.34 kg) participated in this study. Subjects performed a sit-to-stand movement from a chair while position of center of pressure and knee angular speed were recorded. Furthermore, maximal isokinetic knee extension and flexion strength at 60°/s, 120°/s and 150°/s was measured. Surface, electromyography (EMG) from the biceps femoris (BF), vastus lateralis (VL) and vastus medialis (VM) was recorded during all tests. Analysis of variance (ANOVA) showed that during the sit-to-stand OA group demonstrated significantly lower knee angular speed (44.49 ± 9.61°/s vs. 71.68 ± 19.86°/s), a more posterior position of the center of pressure (39.20 ± 7.02% vs. 41.95 ± 2.49%) and a higher antagonist BF activation (57.13 ± 20.55% vs. 32.01 ± 19.5%) compared with controls (p < 0.05). Further, women with knee OA demonstrated a lower Moment-to-EMG ratio than controls in extension and eccentric flexion at 60°/s and 150°/s, while the opposite was found for concentric flexion at 60°/s (p < 0.05). Among other factors, the slower performance of the sit-to-stand movement in women with OA is due to a less efficient use of the knee extensor muscles (less force per unit of EMG) and, perhaps, a higher BF antagonist co-activation. This may lead subjects with OA to adopt a different movement strategy compared with controls.  相似文献   

13.
Objective: the purpose of this study was to compare vastus medialis obliquus (VMO) and vastus lateralis (VL) activity while performing a mini-squat with and without isometric hip adduction.

Design and setting: a repeated measures within subjects design was used. Subjects performed two sets of three repetitions of a traditional mini-squat and a mini-squat with concurrent hip adduction (squeeze).

Subjects: 20 recreationally active subjects (10 men, 10 women AGE=28.10±5.91 years, HEIGHT=170.94±11.03 cm, MASS=72.32±16.66 kg) with no history of patellofemoral pain (PFP), quadriceps injury, or other knee injury participated in the study.

Measurements: the EMG signal of the VMO and VL was recorded bilaterally during both exercises. EMG data were normalized to the maximal voluntary isometric contraction (MVIC) of the quadriceps produced during seated, isometric knee extension.

Results: results of repeated measures ANOVA's revealed that the squeeze squat produced significantly greater VMO and VL activity than the traditional squat (p=0.02). For both the traditional and squeeze squats, intrasession reliability from the first to the second set was calculated using intraclass correlation coefficient (ICC) formula (3:1) bilaterally for both the VMO and the VL. All ICC values were greater than 0.9.

Conclusion: combining isometric hip adduction with a mini-squat exercise significantly increases the activity of the quadriceps. Performing mini-squats with isometric hip adduction will be beneficial to patellofemoral patients as they increase quadriceps activity, however, based on our data we cannot conclude that this exercise preferentially recruits the VMO. Further research is needed to determine the exact mechanism by which quadriceps function is altered.  相似文献   


14.
The purpose of this study was to assess the effect of stable vs. unstable conditions on force output and muscle activity during an isometric squat. Nine men involved in recreational resistance training participated in the investigation by completing a single testing session. Within this session subjects performed isometric squats either while standing directly on the force plate (stable condition, S) or while standing on inflatable balls placed on top of the force plate (unstable condition, U). Electromyography (EMG) was recorded during both conditions from the vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), and medial gastrocnemius (G) muscles. Results indicated peak force (PF) and rate of force development (RFD) were significantly lower, 45.6% and 40.5% respectively, in the U vs. S condition (p < or = 0.05). Average integrated EMG values for the VL and VM were significantly higher in the S vs. U condition. VL and VM muscle activity was 37.3% and 34.4% less in U in comparison to S. No significant differences were observed in muscle activity of the BF or G between U and S. The primary finding in this investigation is that isometric squatting in an unstable condition significantly reduces peak force, rate of force development, and agonist muscle activity with no change in antagonist or synergist muscle activity. In terms of providing a stimulus for strength gain no discernable benefit of performing a resistance exercise in an unstable condition was observed in the current study.  相似文献   

15.
The objective of this study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during fatiguing knee extensions. Thirty young adults were evaluated for their one-repetition maximum (1RM) during a seated, right-leg, inertial knee extension. All subjects then completed a single set of repeated knee extensions at 50% 1RM, to failure. Subjects performed a knee extension (concentric phase), held the weight with the knee extended for 2s (isometric phase), and lowered the weight in a controlled manner (eccentric phase). Raw EMG of the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were full-wave rectified, integrated and normalized to the 1RM EMG, for each respective phase and repetition. The EMG median frequency (f(med)) was computed during the isometric phase. An increase in QF muscle EMG was observed during the concentric phase across the exercise duration. VL EMG was greater than the VM and RF muscles during the isometric phase, in which no significant changes occurred in any of the muscles across the exercise duration. A significant decrease in EMG across the exercise duration was observed during the eccentric phase, with the VL EMG greater than the VM and RF muscles. A greater decrease in VL and RF muscle f(med) during the isometric phase, than the VM muscle, was observed with no gender differences. The findings demonstrated differential recruitment of the superficial QF muscle, depending on the contraction mode during dynamic knee extension exercise, where VL muscle dominance appears to manifest across the concentric-isometric-eccentric transition.  相似文献   

16.
The purpose of this study was to compare the electromyographic (EMG) amplitudes of the quadriceps femoris (QF) muscles during a maximum voluntary isometric contraction (MVIC) to submaximal and maximal dynamic concentric contractions during active exercises. A secondary purpose was to provide information about the type of contraction that may be most appropriate for normalization of EMG data if one wants to determine if a lower extremity closed chain exercise is of sufficient intensity to produce a strengthening response for the QF muscles. Sixty-eight young healthy volunteers (39 female, 29 male) with no lower extremity pain or injury participated in the study. Surface electrodes recorded EMG amplitudes from the vastus medialis obliquus (VMO), rectus femoris (RF), and vastus lateralis (VL) muscles during 5 different isometric and dynamic concentric exercises. The last 27 subjects performed an additional 4 exercises from which a second data set could be analyzed. Maximum isokinetic knee extension and moderate to maximum closed chain exercises activated the QF significantly more than a MVIC. A 40-cm. lateral step-up exercise produced EMG amplitudes of the QF muscles of similar magnitude as the maximum isokinetic knee extension exercises and would be an exercise that could be considered for strengthening the QF muscles. Most published EMG studies of exercises for the QF have been performed by comparing EMG amplitudes during dynamic exercises to a MVIC. This procedure can lead one to overestimate the value of a dynamic exercise for strengthening the QF muscles. We suggest that when studying the efficacy of a dynamic closed chain exercise for strengthening the QF muscles, the exercise be normalized to a dynamic maximum muscle contraction such as that obtained with knee extension during isokinetic testing.  相似文献   

17.
The purpose of the study was to examine the effect of prolonged tonic vibration applied to a single synergist muscle on maximal voluntary contraction (MVC) and maximal rate of force development (dF/dt(max)). The knee extension MVC force and surface electromyogram (EMG) from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) during MVC were recorded before and after vibration of RF muscle at 30 Hz for 30 min. MVC, dF/dt(max), and the integrated EMG (iEMG) of RF decreased significantly after prolonged tonic vibration in spite of no changes in iEMG of VL and VM. The present results indicate that MVC and dF/dt(max) may be influenced by the attenuated Ia afferent functions of a single synergist muscle.  相似文献   

18.
The purpose of this study was to investigate changes in mechanomyographic (MMG) intensity patterns for the vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM) during submaximal to maximal concentric isokinetic, eccentric isokinetic and isometric muscle actions of the leg extensors. Eleven men (mean ± SD age = 20.1 ± 1.1 years) performed concentric, eccentric and isometric muscle actions of the dominant leg extensors on 3 separate days. Surface MMG signals were detected from the VL, RF and VM, processed with a wavelet analysis and examined with a trend plot. The results indicated that the trend plot was capable of tracking systematic changes in MMG amplitude and frequency with an increase in torque. However, these changes were statistically significant in only 26% of the cases. There were also no consistent differences between muscles or contraction types for the significance of the trend plots.  相似文献   

19.
The aim of the study was to investigate EMG signal features during fatigue and recovery at three locations of the vastus medialis and lateralis muscles. Surface EMG signals were detected from 10 healthy male subjects with six 8-electrode arrays located at 10%, 20%, and 30% of the distance from the medial (for vastus medialis) and lateral (vastus lateralis) border of the patella to the anterior superior spine of the pelvic. Subjects performed contractions at 40% and 80% of the maximal force (MVC) until failure to maintain the target force, followed by 20 2-s contractions at the same force levels every minute for 20 min (recovery). Average rectified value, mean power spectral frequency, and muscle fiber conduction velocity were estimated from the EMG signals in 10 epochs from the beginning of the contraction to task failure (time to task failure, mean ± SD, 70.7 ± 25.8 s for 40% MVC; 27.4 ± 16.8 s for 80% MVC) and from the 20 2 s time intervals during recovery. During the fatiguing contraction, the trend over time of EMG average rectified value depended on location for both muscles (P < 0.05). After 20-min recovery, mean frequency and conduction velocity of both muscles were larger than in the beginning of the fatigue task (P < 0.05) (supernormal values). Moreover, the trend over time of mean frequency during recovery was affected by location and conduction velocity values depended on location for both muscles (P < 0.05). The results indicate spatial dependency of EMG variables during fatigue and recovery and thus the necessity of EMG spatial sampling for global muscle assessment.  相似文献   

20.
To determine the non-uniform surface mechanical activity of human quadriceps muscle during fatiguing activity, surface mechanomyogram (MMG), or muscle sound, and surface electromyogram (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles of seven subjects during unilateral isometric knee extension exercise. Time- and frequency-domain analyses of MMG and of EMG fatigued by 50 repeated maximal voluntary contractions (MVC) for 3 s, with 3-s relaxation in between, were compared among the muscles. The mean MVC force fell to 49.5 (SEM 2.0)% at the end of the repeated MVC. Integrated EMG decreased in a similar manner in each muscle head, but a marked non-uniformity was found for the decline in integrated MMG (iMMG). The fall in iMMG was most prominent for RF, followed by VM and VL. Moreover, the median frequency of MMG and the relative decrease in that of EMG in RF were significantly greater (P < 0.05) than those recorded for VL and VM. These results would suggest a divergence of mechanical activity within the quadriceps muscle during fatiguing activity by repeated MVC. Accepted: 19 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号