首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a high-resolving dodecyl sulfate electrophoretic system rat liver cytochrome c oxidase was separated into 13 different polypeptides. An antiserum against rat liver holocytochrome c oxidase immunoreacted with all 13 polypeptides, as demonstrated by immunofluorescence after transfer of the separated Coomassie blue-stained bands on nitrocellulose and coupling with FITC-protein A ("western blot"). Polypeptide-specific antisera reacted only with their corresponding polypeptides indicating that the various protein bands are represented by individual polypeptides. From total proteins of rat liver, kidney, heart, spleen and skeletal muscle mitochondria, only the cytochrome c oxidase polypeptides showed immunofluorescence with an antiserum against the rat liver holoenzyme. In contrast to the polypeptide from liver, polypeptide VIa from heart and skeletal muscle showed little or no reactivity, indicating a tissue-specificity of this polypeptide. Mitochondrial proteins from pig, bovine and blackbird heart were incubated with an antiserum against the rat liver holoenzyme. Immunoreaction was found with most cytochrome c oxidase polypeptides but not with polypeptide VIa. This result demonstrates less immunological relationship between tissue-specific polypeptides (VIa, VIIa and VIII) of the same species than between tissue-unspecific polypeptides of different species.  相似文献   

2.
The preliminary data on the amino acid sequence of subunit IV from bovine heart cytochrome oxidase (Albany) is presented. The subunit consists of 97 amino acids linked together in a single polypeptide chain. The sequence was established by the isolation, purification and sequencing of some of the tryptic, chymotryptic and thermolytic and Staphylococcus aureus protease peptides. This subunit is present in all cytochrome oxidase preparations. It corresponds to polypeptide VIa in cytochrome oxidase (Aachen) and subunit a in cytochrome oxidase (Eugene).  相似文献   

3.
The orientation of the thirteen polypeptides of rat-liver cytochrome c oxidase in the inner mitochondrial membrane was studied by proteolytic digestion of mitoplasts and sonicated particles. After separation by sodium dodecylsulfate gel electrophoresis proteins were transferred on nitrocellulose, and individual polypeptides were identified by incubation with polypeptide-specific antisera, followed by fluorescein-isothiocyanate-conjugated protein A. The three catalytic polypeptides I-III and seven nuclear coded polypeptides (IV, Vb, VIa, VIc, VIIa, VIIb and VIII) were found accessible to proteases from the cytoplasmic phase. Polypeptides II, IV, Va, Vb and VIa were accessible from the matrix phase, indicating a transmembraneous orientation of polypeptides II, IV, Vb and VIa. Together with data on cross-linking and on cytochrome-c-protected labeling of polypeptides, a model of the cytochrome c oxidase complex was developed. It is suggested that the cytochrome c binding site on polypeptide II is surrounded by several nuclear-coded polypeptides, which may modulate the affinity of the enzyme towards cytochrome c.  相似文献   

4.
Detergent-solubilized dimeric and monomeric cytochrome c oxidase (CcO) have significantly different quaternary stability when exposed to 2-3 kbar of hydrostatic pressure. Dimeric, dodecyl maltoside-solubilized cytochrome c oxidase is very resistant to elevated hydrostatic pressure with almost no perturbation of its quaternary structure or functional activity after release of pressure. In contrast to the stability of dimeric CcO, 3 kbar of hydrostatic pressure triggers multiple structural and functional alterations within monomeric cytochrome c oxidase. The perturbations are either irreversible or slowly reversible since they persist after the release of high pressure. Therefore, standard biochemical analytical procedures could be used to quantify the pressure-induced changes after the release of hydrostatic pressure. The electron transport activity of monomeric cytochrome c oxidase decreases by as much as 60% after exposure to 3 kbar of hydrostatic pressure. The irreversible loss of activity occurs in a time- and pressure-dependent manner. Coincident with the activity loss is a sequential dissociation of four subunits as detected by sedimentation velocity, high-performance ion-exchange chromatography, and reversed-phase and SDS-PAGE subunit analysis. Subunits VIa and VIb are the first to dissociate followed by subunits III and VIIa. Removal of subunits VIa and VIb prior to pressurization makes the resulting 11-subunit form of CcO even more sensitive to elevated hydrostatic pressure than monomeric CcO containing all 13 subunits. However, dimeric CcO, in which the association of VIa and VIb is stabilized, is not susceptible to pressure-induced inactivation. We conclude that dissociation of subunit III and/or VIIa must be responsible for pressure-induced inactivation of CcO since VIa and VIb can be removed from monomeric CcO without significant activity loss. These results are the first to clearly demonstrate an important structural role for the dimeric form of cytochrome c oxidase, i.e., stabilization of its quaternary structure.  相似文献   

5.
The complete amino acid sequence of the cytoplasmic polypeptide VIa of cytochrome c oxidase from beef heart is described. The primary structure of this component of complex IV of the respiratory chain is elucidated by isolation and sequencing of overlapping glutamic acid, arginine, tryptophan and methionine fragments obtained by cleavage with Staphylococcus aureus protease, protease from submaxillaris glands of mice, 2-iodosylbenzoic acid and cyanogen bromide. The chain length of polypeptide VIa is 98 amino acids, the resulting molecular mass of 10670 Da. The hydrophilic protein does not contain a hydrophobic membrane penetrating sequence domain. Its function in the respiratory complex IV is unknown.  相似文献   

6.
Polyclonal antibodies have been obtained against a synthetic dodecapeptide identical to the aminoacid sequence 120-131 DSPIKDGVWPPE (inferred from its DNA sequence) of Paracoccus denitrificans cytochrome c oxidase subunit III. The antibodies had a titer higher than 1:10000 when tested against the antigen. These antibodies have been used to produce immunological evidence that, despite the fact that subunit III is not isolated with cytochrome c oxidase, it exists in Paracoccus denitrificans lysates. The antibodies did not show reactivity with bovine heart cytochrome c oxidase either by ELISA or immunoblotting. It was also shown that the antibodies react with a single polypeptide present in Paracoccus denitrificans cell lysates, having an apparent molecular weight close to that of subunit III of bovine heart oxidase.  相似文献   

7.
In order to obtain information on the role of subunit III in the function and aggregation state of cytochrome c oxidase, the kinetics of ferrocytochrome c oxidation by the bovine cytochrome c oxidase depleted of its subunit III were studied and compared with those of the oxidase isolated from P. denitrificans which contains only two subunits. The aggregation state of both enzymes dispersed in dodecyl maltoside was also compared. The two-subunit oxidase from P. denitrificans gave linear Eadie-Hofstee plots and the enzyme resulted to be monomeric (Mr = 82 000) both, in gel filtration and sucrose gradient centrifugation studies. The bovine heart subunit III depleted enzyme, under conditions when the P. denitrificans cytochrome c oxidase was in the form of monomers, was found to be dimeric by sucrose gradient centrifugation analysis. At lower enzyme concentrations monomers were, however, detected by gel filtration. Depletion of subunit III was accompanied by the loss of small polypeptides (VIa, VIb and VIIa) and of almost all phospholipid (1-2 molecules were left per molecule of enzyme). The electron-transfer activity of the subunit III-depleted enzyme showed a monophasic Eadie-Hofstee plot, which upon addition of phospholipids became non-linear, similar to that of the control bovine cytochrome c oxidase. One of the roles of subunit III may be that of stabilising the dimers of cytochrome c oxidase. Lack of this subunit and loss of phospholipid is accompanied by a change in the kinetics of electron transfer, which might be the consequence of enzyme monomerisation.  相似文献   

8.
1. The assembly of rat liver cytochrome oxidase was studied in isolated hepatocytes and isolated liver mitochondria labelled with L-[35S]methionine. 2. Labelled subunits II and III appeared in the immunoabsorbed holoenzyme within minutes after the initiation of a pulse label. In contrast, labelled subunit I appeared in immunoabsorbed holoenzyme only after a subsequent 2 h chase or after an additional 2 h of labelling. Subunit I was heavily labelled, however, in intact mitochondria after 10 min. 3. A similar pattern of labelling was observed in holo-cytochrome oxidase which was chemically isolated by a small scale procedure adapted for this purpose. The appearance of subunit I in the holoenzyme was delayed for 1.5-2 h after a 60 min pulse with labelled methionine. 4. Incubation of hepatocytes for 4 h in the presence of cycloheximide had no effect on the labelling pattern described above. 5. Methods were developed in which newly translated, presumably unassembled, subunits of cytochrome oxidase could be separated from the holoenzyme by fractionation in Triton X-114. Short-term pulse experiments indicate that subunits II and III are associated with the holoenzyme fraction immediately after their completion, whereas subunit I is not. 6. The data are consistent with a model in which cytochrome oxidase assembly is viewed as an ordered and sequential event.  相似文献   

9.
We have used mixed oligonucleotide probes to isolate a cDNA for the heart/muscle isoform of cytochrome c oxidase (COX) subunit VIa (COX VIa-H) from a bovine heart cDNA library in lambda gt10. This cDNA, and a second one isolated upon rescreening, predict a 97 amino acid COX VIa precursor protein comprised of a 12 amino acid, basic presequence plus an 85 residue mature VIa protein. The presence of a presequence contrasts with the rat heart COX VIa cDNA.  相似文献   

10.
Cytochrome c oxidase was isolated from pig, bovine, rat and human tissues including liver, heart, diaphragm and kidney. The native and the sodium-dodecyl-sulfate (SDS)-dissociated enzymes were labelled under optimal conditions with N-ethyl-[2,3-14C]maleimide before and after reduction with dithiothreitol, separated into 13 subunits by SDS gel electrophoresis and the radioactive bands were visualized by fluorography. In some cases the radioactive bands were cut out and counted. All isozymes were labelled in subunits I, III, Va and VIIb, and in subunit II after reduction. Labelling of subunit Vb was equivocal, and in no case were subunits IV and VIc labelled. All other subunits were labelled tissue-specifically and/or species-specifically. No differences were found between labelling of the native and SDS-dissociated enzyme. By relating the molar amount of bound N-ethylmaleimide to the known amount of cysteines in subunits of bovine heart cytochrome c oxidase, the percentage of -SH group reactivity was calculated. Only the cysteine of subunit Va was found to be 100% reactive. The distinct and different reactivity of subunit VIIb as compared to subunits VIIa and VIIc clearly establishes this polypeptide as an independent subunit of mammalian cytochrome c oxidase.  相似文献   

11.
The hydrophobic domain of the membrane-bound enzyme yeast cytochrome c oxidase was labelled with photoactivable phosphatidylcholines.Subunits I, II and III were labelled; a minor labelling was also found on subunits V and VII.The labelling of subunit V was located in a small terminal polypeptide sequence.  相似文献   

12.
The role of the nuclear-encoded subunit VIa in the regulation of cytochrome oxidase by ATP was investigated in isolated yeast mitochondria. As the subunit VIa-null strain possesses a fully active and assembled cytochrome oxidase, multiple ATP-regulating sites were characterized with respect to their location and their kinetic effect: (a) intra-mitochondrial ATP inhibited the complex IV activity of the null strain, whereas the prevailing effect of ATP on the wild-type strain, at low ionic strength, was activation on the cytosolic side of complex IV, mediated by subunit VIa. However, at physiological ionic strength (i.e. approximately 200 mM), activation by ATP was absent but inhibition was not impaired; (b) in ethanol-respiring mitochondria, when the electron flux was modulated using a protonophoric uncoupler, the redox state of aa3 cytochromes varied with respect to activation (wild-type) or inhibition (null-mutant) of the cytochrome oxidase by ATP; (c) consequently, the control coefficient of cytochrome oxidase on respiratory flux, decreased (wild-type) or increased (null-mutant) in the presence of ATP; (d) considering electron transport from cytochrome c to oxygen, the response of cytochrome oxidase to its thermodynamic driving force was increased by ATP for the wild-type but not for the mutant subunit. Taken together, these findings indicate that at physiological concentration, ATP regulates yeast cytochrome oxidase via subunit-mediated interactions on both sides of the inner membrane, thus subtly tuning the thermodynamic and kinetic control of respiration. This study opens up new prospects for understanding the feedback regulation of the respiratory chain by ATP.  相似文献   

13.
Cytochrome c oxidase was isolated from brown fat tissue of the rat and compared with the isozymes from rat liver and heart, which differ at least in subunits VIa and VIII. ELISA titrations of COX from the three tissues with monospecific antisera to all 13 subunits of the rat liver enzyme showed differences between the three enzymes. The N-terminal amino-acid sequence analysis of subunits VIa and VIII from SDS-PAGE gel bands of the three enzymes indicates the occurrence of three different isozymes in the rat. N-terminal amino-acid sequence analysis of subunits VIa and VIII from cytochrome c oxidase of bovine and human heart demonstrates also species-specific differences in the expression of the 'liver-type' and 'heart-type' of subunits VIa and VIII.  相似文献   

14.
Treatment of molecular crystals of the bovine cytochrome oxidase and the cytochrome oxidase-cytochrome c complex with thermally activated tritium leads to highly labelled cytochrome oxidase preparations. HPLC separation of its subunits and measurements of radioactivity of each polypeptide allow to determine the shielding of cytochrome oxidase surface sites by cytochrome c in the complex.  相似文献   

15.
16.
Cytochrome c oxidase isolated from pig liver and heart was incubated with 1-ethyl-3-[3-(dimethylamino) propyl]carbodiimide and [14C]glycine ethyl ester in the presence and absence of cytochrome c. Labelling of individual subunits was determined after separation of the enzyme complexes into 13 polypeptides by SDS-gel electrophoresis. Polypeptide II and additional but different polypeptides were labelled in the liver and in the heart enzyme. Labelling of polypeptide II and of some other polypeptides could be partially or completely suppressed by cytochrome c. From the data two conclusions can be drawn: In addition to polypeptide II, other polypeptides take part in the binding of cytochrome c to cytochrome c oxidase; the binding domain for cytochrome c is different in pig liver and heart cytochrome c oxidase.Cytochrome c oxidase isozymeCytochrome c binding domain1-Ethyl-3-(3-dimethylaminopropyl)carbodiimideTissue specificity  相似文献   

17.
Monoclonal antibodies to subunits of bovine heart cytochrome c oxidase were prepared by immunizing mice with the isolated enzyme. The majority of antibody-producing cell lines were found to react with two different subunits of similar molecular mass, as shown by Western blotting and ELISA titrations with the HPLC-purified subunits. The affinities of the monoclonal antibodies to the subunits were determined by ELISA titrations with increasing concentrations of NH4SCN. Two monoclonal antibodies with a low affinity to subunit VIa had a high affinity to subunit VIc, whereas two other antibodies showed the same affinity to subunits VIIa and VIIb. The same affinity of monoclonal antibodies suggested an evolutionary relationship of subunits VIIa and VIIb, which was further supported by reactivity of these antibodies to subunits VIIa and VIIb of cytochrome c oxidase from different species and tissues. Also the evolutionary relationship between subunit VIa and VIc was shown by hybridization at low stringency of cDNAs for rat cytochrome c oxidase subunits VIc and VIa-h (heart-type), after amplification by the polymerase chain reaction, with a probe of VIa-l (liver-type).  相似文献   

18.
19.
20.
The subunit pattern of immunopurified cytochrome c oxidase from cultured mouse cells and mature tissues of the mouse was investigated by electrophoretic analysis. In mature tissues two forms of cytochrome c oxidase could clearly be identified on the basis of differences in morbidity or staining intensity of subunits VIa and VIII. One form was present in muscle and heart, and the other in liver, kidney and spleen. In lung both forms were found. In the thymus, subunit VIII showed the characteristics of subunit VIII found in muscle and heart, whereas subunit VIa resembled subunit VIa found in liver. This suggest the existence of a third cytochrome c oxidase isoform. The subunits of cytochrome c oxidase from cultured cell lines showed no differences between the various cell lines and resembled those of mature mouse liver tissue. The cytochrome c oxidase isoform from cultured proliferating cells might therefore be the same as the one found in liver. Alternatively, it might represent either a normally occurring fetal isoform, or a form specific for poorly differentiated cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号