首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A procedure for enumerating and identifying Vibrio vulnificus in oysters was developed and evaluated. This method consists of growth on a direct plating medium (VVE medium) for isolating the organism from shellfish tissues, followed by biochemical tests for differentiating and identifying presumptively positive isolates. Densities of V. vulnificus are reliably obtained in 2 to 4 days, and as few as 10 culturable cells per 100 g can be identified. The procedure was evaluated by using a DNA probe technique specific for the cytotoxin-hemolysin gene of V. vulnificus and gas chromatographic analysis of the fatty acid contents of positive isolates. Only 3.2 and 0.4% of the isolates gave false-positive and false-negative results, respectively. The average level of recovery on VVE medium for 33 strains, including both clinical and environmental isolates, was 92% of the level of recovery obtained with brain heart infusion agar supplemented with 1% NaCl. The densities of V. vulnificus in oyster homogenates and individual oysters harvested from gulf and Atlantic coastal waters revealed that seasonally high levels occurred. The VVE medium procedure facilitated enumeration of this pathogen in molluscan shellfish and had a distinct advantage over the widely used most-probable-number procedure for V. vulnificus enumeration, which requires 5 to 7 days and often gives improbable and imprecise results.  相似文献   

2.
The differential and selective sodium dodecyl sulfate-polymyxin B-sucrose medium (SPS) of Kitaura et al. (T. Kitaura, S. Doke, I. Azuma, M. Imaida, K. Miyano, K. Harada, and E. Yabuuchii, FEMS Microbiol. Lett. 17:205-209, 1983), which highlights alkylsulfatase activity, was evaluated for its potential use in the direct isolation and enumeration of Vibrio vulnificus from shellfish. V. vulnificus was detected by this method in six of nine shellfish samples collected from diverse geographic locales during the summer of 1986. Direct enumeration of V. vulnificus at 7.0 X 10(2) to 2.2 X 10(4) CFU/g of shellfish was achieved on SPS agar. All sample results were confirmed in parallel examinations by using conventional glucose-salt-Teepol (Shell Oil Co.) broth and alkaline peptone water enrichment with plating onto thiosulfate-citrate-bile salts-sucrose agar. Additionally, alkylsulfatase activity was evaluated in vitro for 97 strains representing 14 Vibrio spp. V. vulnificus and Vibrio cholerae-01 were the only species consistently found to possess this activity. The range of plating efficiencies for random V. vulnificus strains analyzed on SPS was 11 to 74% (mean, 39%). The use of SPS shows great promise for the study of shellfish and other environmental sources for V. vulnificus.  相似文献   

3.
The differential and selective sodium dodecyl sulfate-polymyxin B-sucrose medium (SPS) of Kitaura et al. (T. Kitaura, S. Doke, I. Azuma, M. Imaida, K. Miyano, K. Harada, and E. Yabuuchii, FEMS Microbiol. Lett. 17:205-209, 1983), which highlights alkylsulfatase activity, was evaluated for its potential use in the direct isolation and enumeration of Vibrio vulnificus from shellfish. V. vulnificus was detected by this method in six of nine shellfish samples collected from diverse geographic locales during the summer of 1986. Direct enumeration of V. vulnificus at 7.0 X 10(2) to 2.2 X 10(4) CFU/g of shellfish was achieved on SPS agar. All sample results were confirmed in parallel examinations by using conventional glucose-salt-Teepol (Shell Oil Co.) broth and alkaline peptone water enrichment with plating onto thiosulfate-citrate-bile salts-sucrose agar. Additionally, alkylsulfatase activity was evaluated in vitro for 97 strains representing 14 Vibrio spp. V. vulnificus and Vibrio cholerae-01 were the only species consistently found to possess this activity. The range of plating efficiencies for random V. vulnificus strains analyzed on SPS was 11 to 74% (mean, 39%). The use of SPS shows great promise for the study of shellfish and other environmental sources for V. vulnificus.  相似文献   

4.
Real-time PCR analysis of Vibrio vulnificus from oysters   总被引:7,自引:0,他引:7  
Vibrio vulnificus is an opportunistic human pathogen commonly found in estuarine environments. Infections are associated with raw oyster consumption and can produce rapidly fatal septicemia in susceptible individuals. Standard enumeration of this organism in shellfish or seawater is laborious and inaccurate; therefore, more efficient assays are needed. An oligonucleotide probe derived from the cytolysin gene, vvhA, was previously used for colony hybridizations to enumerate V. vulnificus. However, this method requires overnight growth, and vibrios may lack culturability under certain conditions. In the present study, we targeted the same locus for development of a TaqMan real-time PCR assay. Probe specificity was confirmed by amplification of 28 V. vulnificus templates and by the lack of a PCR product with 22 non-V. vulnificus strains. Detection of V. vulnificus in pure cultures was observed over a 6-log-unit linear range of concentration (10(2) to 10(8) CFU ml(-1)), with a lower limit of 72 fg of genomic DNA micro l of PCR mixture(-1) or the equivalent of six cells. Similar sensitivity was observed in DNA extracted from mixtures of V. vulnificus and V. parahaemolyticus cells. Real-time PCR enumeration of artificially inoculated oyster homogenates correlated well with colony hybridization counts (r(2) = 0.97). Numbers of indigenous V. vulnificus cells in oysters by real-time PCR showed no significant differences from numbers from plate counts with probe (t test; P = 0.43). Viable but nonculturable cells were also enumerated by real-time PCR and confirmed by the BacLight viability assay. These data indicate that real-time PCR can provide sensitive species-specific detection and enumeration of V. vulnificus in seafood.  相似文献   

5.
Phages lytic to Vibrio vulnificus were found in estuarine waters, sediments, plankton, crustacea, molluscan shellfish, and the intestines of finfish of the U.S. Gulf Coast, but no apparent relationship between densities of V. vulnificus and its phages was observed. Phage diversity and abundance in molluscan shellfish were much greater than in other habitats. V. vulnificus phages isolated from oysters did not lyse other mesophilic bacteria also isolated from oysters. Both V. vulnificus and its phages were found in a variety of oyster tissues and fluids with lowest densities in the hemolymph and mantle fluid. These findings suggest a close ecological relationship between V. vulnificus phages and molluscan shellfish.  相似文献   

6.
Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina   总被引:2,自引:0,他引:2  
While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).  相似文献   

7.
In this study, we developed a PCR-based rapid detection method for clinically important pathogenic strains of Vibrio vulnificus. Positive amplification of the 504-bp viuB fragment was seen in all 22 clinical isolates tested but only in 8 out of 33 environmental isolates. The combination of the species-specific 205-bp vvh fragment along with viuB in a multiplexed PCR enabled us to confirm the presence of potentially pathogenic strains of V. vulnificus. No amplification of other Vibrio spp. or non-Vibrio bacteria was evidenced, suggesting a high specificity of detection by this method. The sensitivity of detection for both targeted genes was 10 pg of purified DNA, which correlated with 10(3) V. vulnificus CFU in 1 mL of pure culture or 1 g un-enriched seeded oyster tissue homogenate. This sensitivity was improved to 1 CFU per gram of oyster tissue homogenate in overnight-enriched samples. A SYBR Green I based real-time PCR method was also developed that was shown to produce results consistent with the conventional PCR method. Application of the multiplexed real-time PCR to natural oyster tissue homogenates exhibited positive detection of vvh in 51% of the samples collected primarily during the summer months; however, only 15% of vvh positive samples exhibited viuB amplicons. The rapid, sensitive, and specific detection of clinically important pathogenic V. vulnificus in shellfish would be beneficial in reducing illnesses and deaths caused by this pathogen.  相似文献   

8.
This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers.  相似文献   

9.
Certain indigenous estuarine bacteria, such as Vibrio vulnificus, may cause opportunistic human infections after consumption of raw oysters or exposure of tissues to seawater. V. vulnificus is known to be closely associated with oyster (Crassostrea virginica) tissues and is not removed by controlled purification methods, such as UV light-assisted depuration. In fact, when live shellfish are subjected to controlled purification, the number of V. vulnificus cells can markedly increase. A review of previous studies showed that few workers have examined mechanisms in oysters which may influence the persistence of V. vulnificus in shellfish, such as the fate of V. vulnificus following phagocytosis by molluscan hemocytes. The objectives of this study were to define the intracellular viability and extracellular viability of V. vulnificus during the phagocytic process and to study the release of specific lysosomal enzymes. The viability of a virulent estuarine V. vulnificus isolate with opaque morphology was compared with the viability of a translucent, nonvirulent form, the viability of Vibrio cholerae, and the viability of Escherichia coli in phagocytosis experiments. Our results showed that the levels of phagocytosis and bactericidal degradation of the opaque V. vulnificus isolate were less than the levels of phagocytosis and bactericial degradation of the translucent morphotype. These findings indicate that encapsulation may contribute to resistance to ingestion and degradation by hemocytes. The rates of intracellular death of V. cholerae and E. coli exceeded the rate of intracellular death of the opaque V. vulnificus isolate, even though the ingestion or uptake rates did not differ significantly. The levels of lysozyme activity and acid phosphatase activity were not significantly different in hemocyte monolayers inoculated with V. vulnificus.  相似文献   

10.
DNA extraction procedures and PCR conditions to detect Vibrio vulnificus cells naturally occurring in oysters were developed. In addition, PCR amplification of V. vulnificus from oysters seeded with biotype 1 cells was demonstrated. By the methods described, V. vulnificus cells on a medium (colistin-polymyxin B-cellobiose agar) selective for this pathogen were detectable in oysters harvested in January and March, containing no culturable cells (< 67 CFU/g), as well as in oysters harvested in May and June, containing culturable cells. It was possible to complete DNA extraction, PCR, and gel electrophoresis within 10 h by using the protocol described for oysters. V. vulnificus biotype 2 cells were also detected in eel tissues that had been infected with this strain and subsequently preserved in formalin. The protocol used for detection of V. vulnificus cells in eels required less than 5 h to complete. Optimum MgCl2 concentrations for the PCR of V. vulnificus from oysters and eels were different, although the same primer pair was used for both. This is the first report on the detection of cells of V. vulnificus naturally present in shellfish and represents a potentially powerful method for monitoring this important human and eel pathogen.  相似文献   

11.
The pathogenic bacterium Vibrio vulnificus is widely distributed in estuarine waters throughout the world. In this study, the presence of V. vulnificus in oysters was studied both by conventional culture and DNA-based molecular technique. Following enrichment in alkaline peptone water (APW), the bacteria were lysed and a nested polymerase chain reaction (PCR) for vvhA gene was performed. The effect of duration of enrichment on the sensitivity of detection by PCR was evaluated. The organism was isolated from 43% of samples after 18 h enrichment in APW by conventional culture method. Nested PCR amplifying a fragment of vvhA gene detected the organism in 11%, 60% and 81% of samples following 0, 6 and 18 h of enrichment. All the biochemically identified V. vulnificus strains possessed vvhA gene and belonged to biotype 1. The genetic relatedness among the strains was studied by randomly amplified polymorphic DNA (RAPD) PCR and gyrB sequence analysis. The results suggest the presence of two distinct clonal groups of V. vulnificus in oysters in India. The study demonstrates, for the first time that gyrB sequence analysis could be used to study the genetic diversity of V. vulnificus.  相似文献   

12.
Densities of Vibrio vulnificus in the intestinal contents of various finfish, oysters, and crabs and in sediment and waters of the U.S. Gulf Coast were determined by the most probable number procedure. Species were identified by enzyme immunoassay. During the winter, densities of V. vulnificus were low, and the organism was isolated more frequently from sheepshead fish than from sediment and seawater. From April to October, V. vulnificus densities were considerably higher (2 to 5 logs) in estuarine fish than in surrounding water, sediment, or nearby oysters and crustacea. Highest densities were found in the intestinal contents of certain bottom-feeding fish (10(8)/100 g), particularly those that consume mollusks and crustaceans. Densities of V. vulnificus in fish that feed primarily on plankton and other finfish were similar to those in oysters, sediment, and crabs (10(5)/100 g). V. vulnificus was found infrequently in offshore fish. The presence of high densities of V. vulnificus in the intestines of common estuarine fish may have both ecological (growth and transport) and public health (food and wound infections) implications.  相似文献   

13.
Vibrio (Beneckea) vulnificus is a recently recognized halophilic organism that may cause serious human infections. Patients infected with V. vulnificus often have a history of exposure to the sea, suggesting that the organism may be a common inhabitant of marine environments. Twenty-one inshore sites around Galveston Island in the Gulf of Mexico were cultured for V. vulnificus over a 12-month period. The organism was recovered from all but one of the sites at some time during the study. It was frequently isolated during the summer and fall from environments of relatively low salinity (7 to 16%). V. vulnificus was rarely isolated from any of the sites during the winter months, when water temperatures dropped below 20 degrees C. In vitro growth characteristics of environmental isolates of V. vulnificus demonstrated salinity optima of 1.0 to 2.0% NaCl and a temperature optimum of 37 degrees C. These growth characteristics may account for the seasonal and geographical variations in occurrence of the organism. Overall, the results of these studies indicate that V. vulnificus is commonly found in Gulf Coast environments and that the occurrence of the organism is favored by warm temperatures and relatively low salinity.  相似文献   

14.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

15.
AIMS: The purpose of this study was to compare a recently described medium, thiosulphate-chloride-iodide (TCI), for the isolation of estuarine vibrios with thiosulphate-citrate-bile salts-sucrose (TCBS). METHODS: A total of 492 colonies which developed on these media from estuarine water samples taken monthly over a 10-month period were examined. RESULTS: A much larger number of colonies developed on TCBS than TCI, and minimal taxonomic criteria indicated that a higher percentage (61%) of TCBS colonies could be identified as Vibrio spp. when compared with TCI (46%). SIGNIFICANCE: This study suggests that TCBS is a superior medium when compared with TCI for the isolation of Vibrio spp. from estuarine waters. Because of the public health risk presented by V. vulnificus, V. parahaemolyticus, V. cholerae and other vibrios, the selection of the most appropriate medium for their isolation is extremely important.  相似文献   

16.
Thiosulfate-citrate-bile salts-sucrose agar has been routinely used for the isolation of pathogenic vibrios, although its selectivity for Vibrio cholerae and Vibrio vulnificus is inadequate. Therefore, a new plating medium, cellobiose-polymyxin B-colistin agar, was developed for the isolation of these two species. Cellobiose-polymyxin B-colistin agar demonstrated a significant advantage over other media designed for the isolation or differentiation of vibrios: of both the 136 strains representing 19 Vibrio species and the marine isolates of the genera Pseudomonas, Flavobacterium, and Photobacterium, only V. vulnificus and V. cholerae were able to grow. Furthermore, the fermentation of cellobiose by V. vulnificus allowed for the easy differentiation of these two species. This medium offers significant potential as a selective and differential medium for these two pathogenic vibrios.  相似文献   

17.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

18.
Thiosulfate-citrate-bile salts-sucrose agar has been routinely used for the isolation of pathogenic vibrios, although its selectivity for Vibrio cholerae and Vibrio vulnificus is inadequate. Therefore, a new plating medium, cellobiose-polymyxin B-colistin agar, was developed for the isolation of these two species. Cellobiose-polymyxin B-colistin agar demonstrated a significant advantage over other media designed for the isolation or differentiation of vibrios: of both the 136 strains representing 19 Vibrio species and the marine isolates of the genera Pseudomonas, Flavobacterium, and Photobacterium, only V. vulnificus and V. cholerae were able to grow. Furthermore, the fermentation of cellobiose by V. vulnificus allowed for the easy differentiation of these two species. This medium offers significant potential as a selective and differential medium for these two pathogenic vibrios.  相似文献   

19.
Pathogenesis of Vibrio vulnificus   总被引:8,自引:0,他引:8  
This review describes the factors which are currently recognized as being central to the virulence of the human pathogen, Vibrio vulnificus. This estuarine/marine bacterium occurs in high numbers in molluscan shellfish, primarily oysters, and its ingestion in raw oysters results in a ca. 60% mortality in those persons who are susceptible to this bacterium. The organism is also able to produce life-threatening wound infections. We describe here the nature of both the wound and primary septicemia infections, the virulence factors known or believed to be involved in these infections, possible immunotherapy, and some thoughts on the possibility that not all strains of this pathogen are virulent.  相似文献   

20.
Vibrio vulnificus is an extremely invasive gram-negative bacillus that causes bacteremia and shock. It should be suspected in any patient who is immunocompromised or has liver disease or hemochromatosis. Reduced gastric acidity may also increase the risk of infection if a patient presents with a history of ingesting raw shellfish (especially oysters) or trauma in brackish waters and skin lesions. Patients most commonly present with one of three clinical syndromes: primary septicemia, wound infection, or gastroenteritis. Treatment includes aggressive wound debridement, antibiotic therapy, and supportive care. Rapidly diagnosing and promptly initiating therapy are critical because V vulnificus infection is rapidly progressive and mortality approaches 100% if septic shock occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号