首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black‐browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators.  相似文献   

2.
Jellyfish blooms are common in many oceans, and anthropogenic changes appear to have increased their magnitude in some regions. Although mass falls of jellyfish carcasses have been observed recently at the deep seafloor, the dense necrophage aggregations and rapid consumption rates typical for vertebrate carrion have not been documented. This has led to a paradigm of limited energy transfer to higher trophic levels at jelly falls relative to vertebrate organic falls. We show from baited camera deployments in the Norwegian deep sea that dense aggregations of deep-sea scavengers (more than 1000 animals at peak densities) can rapidly form at jellyfish baits and consume entire jellyfish carcasses in 2.5 h. We also show that scavenging rates on jellyfish are not significantly different from fish carrion of similar mass, and reveal that scavenging communities typical for the NE Atlantic bathyal zone, including the Atlantic hagfish, galatheid crabs, decapod shrimp and lyssianasid amphipods, consume both types of carcasses. These rapid jellyfish carrion consumption rates suggest that the contribution of gelatinous material to organic fluxes may be seriously underestimated in some regions, because jelly falls may disappear much more rapidly than previously thought. Our results also demonstrate that the energy contained in gelatinous carrion can be efficiently incorporated into large numbers of deep-sea scavengers and food webs, lessening the expected impacts (e.g. smothering of the seafloor) of enhanced jellyfish production on deep-sea ecosystems and pelagic–benthic coupling.  相似文献   

3.
The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924–1112) with the Pacific population consuming 2.1×106 t of jellyfish annually (range 1.0–3.7×106) equivalent to 4.2×108 megajoules (MJ) (range 2.0–7.4×108). Model estimates suggest 2–7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×106 t of jellyfish or 2.2×108 MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback''s needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output.  相似文献   

4.
Evidence is provided from stable isotope analysis that aggregations of small ocean sunfish Mola mola (total length <1 m) feed broadly within coastal food webs and their classification as obligate predators of gelatinous zooplankton requires revision.  相似文献   

5.
Many gelatinous zooplankton consume a large amount of prey andhave stomach volumes much greater than the volume of individualprey. We suggest that jellyfish can use their voluminous stomachas a buffering food-accumulating organ that allows the organismto feed at maximum clearance rate in a wide range of fluctuatingfood concentrations. The food accumulation capability was confirmedfor the hydromedusa Sarsia tubulosa feeding on copepods. Starvedjellyfish feeding in high prey concentrations for 1 h displayedmuch higher average ingestion rates compared with jellyfishfeeding for 20 h or with jellyfish that were pre-adjusted tothe food concentration before incubation. The findings haveimplications for design and interpretation of experiments. Thepossibility for jellyfish to feed at maximum clearance ratein either very high prey concentration for a short time or lowprey concentration for a long time was illustrated with calculationsof prey uptake by S. tubulosa feeding in prey concentrationsof variable heterogeneity. The ability of jellyfish to captureprey at maximum clearance rate under different prey concentrations,and to accumulate relatively large amounts of food in theirguts, suggests that they would thrive in both homogenous andpatchy food distributions. This property may have contributedto the evolutionary and ecological success of the medusoid ‘bauplan’.  相似文献   

6.
Gelatinous zooplankton are the least understood of all planktonic animal groups. This is partly due to their fragility, which typically precludes the capture of intact specimens with nets or trawls. Specialized tools and techniques have been developed that allow researchers and aquarists to collect intact gelatinous animals at sea and to maintain many of these alive in the laboratory. This paper summarizes the scientific literature on the capture, collection, and culture of gelatinous zooplankton and incorporates many unpublished methods developed at the Monterey Bay Aquarium in the past 15 years.  相似文献   

7.
Science has rapidly expanded its frontiers with new technologies in the 20th Century. Oceanography now is studied routinely by satellite. Predictive models are on global scales. At the same time, blooms of jellyfish and ctenophores have become problematic, especially after 1980. Although we have learned a great deal about gelatinous zooplankton ecology in the 20th Century on local scales, we generally have not scaled-up to estimate the extent, the causes, or effects of large blooms. In this age of global science, research on gelatinous zooplankton needs to utilize large-scale approaches and predictive equations. Some current techniques enable jellyfish populations (aerial, towed cameras), feeding (metabolic rates, stable isotopes), and dynamics (predictive modeling) to be studied over large spatial and temporal scales. I use examples of scyphomedusae (Aurelia spp., Cyanea capillata, Chrysaora quinquecirrha) and Mnemiopsis leidyi ctenophores, for which considerable data exist, to explore expanding from local to global scales of jellyfish trophic ecology. Regression analyses showed that feeding rates of Aurelia spp. (FR in copepods eaten medusa−1 d−1) generally could be estimated ±50% from in situ data on medusa wet weight (WW) and copepod density; temperature was not a significant factor. FR of C. capillata and C. quinquecirrha were similar to those of Aurelia spp.; the combined scyphomedusa regression underestimated measured FR of C. quinquecirrha and Aurelia spp. by 50% and 180%, respectively, and overestimated measured FR of C. capillata by 25%. Clearance rates (CR in liters cleared of copepods ctenophore−1 d−1) of M. leidyi were reduced in small containers (≤20 l), and a ratio of container-volume to ctenophore-volume of at least 2,500:1 is recommended for feeding experiments. Clearance rates were significantly related to ctenophore WW, but not to prey density or temperature, and estimated rates within 10–159%. Respiration rates of medusae and ctenophores were similar across habitats with greatly ambient different temperatures (10–30°C), and can be predicted from regressions using only mass. These regressions may permit estimation of feeding effects of gelatinous predators without exhaustive collection of feeding data in situ. I recommend that data on feeding and metabolism of jellyfish and ctenophores be entered in a database to allow generalized predictive relationships to be developed to promote inclusion of these important predators in ecosystem studies and models. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

8.
《Ecological Complexity》2008,5(2):165-182
Ecological resilience has been proposed to be generated, in part, in the discontinuous structure of complex systems. Environmental discontinuities are reflected in discontinuous, aggregated animal body mass distributions. Diversity of functional groups within body mass aggregations (scales) and redundancy of functional groups across body mass aggregations (scales) has been proposed to increase resilience. We evaluate that proposition by analyzing mammalian and avian communities of Mediterranean-climate ecosystems. We first determined that body mass distributions for each animal community were discontinuous. We then calculated the variance in richness of function across aggregations in each community, and compared observed values with distributions created by 1000 simulations using a null of random distribution of function, with the same n, number of discontinuities and number of functional groups as the observed data. Variance in the richness of functional groups across scales was significantly lower in real communities than in simulations in eight of nine sites. The distribution of function across body mass aggregations in the animal communities we analyzed was non-random, and supports the contentions of the cross-scale resilience model.  相似文献   

9.
Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish.  相似文献   

10.
The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8–12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998– Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8–12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998–2001; 2006–2011) and decrease (2001–2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach.  相似文献   

11.
Prieto L  Astorga D  Navarro G  Ruiz J 《PloS one》2010,5(11):e13793
A number of causes have been proposed to account for the occurrence of gelatinous zooplankton (both jellyfish and ctenophore) blooms. Jellyfish species have a complex life history involving a benthic asexual phase (polyp) and a pelagic sexual phase (medusa). Strong environmental control of jellyfish life cycles is suspected, but not fully understood. This study presents a comprehensive analysis on the physicochemical conditions that control the survival and phase transition of Cotylorhiza tuberculata; a scyphozoan that generates large outbreaks in the Mediterranean Sea. Laboratory experiments indicated that the influence of temperature on strobilation and polyp survival was the critical factor controlling the capacity of this species to proliferate. Early life stages were less sensitive to other factors such as salinity variations or the competitive advantage provided by zooxanthellae in a context of coastal eutrophication. Coherently with laboratory results, the presence/absence of outbreaks of this jellyfish in a particular year seems to be driven by temperature. This is the first time the environmental forcing of the mechanism driving the life cycle of a jellyfish has been disentangled via laboratory experimentation. Projecting this understanding to a field population under climatological variability results in a pattern coherent with in situ records.  相似文献   

12.
By the pulsed nature of their life cycles, gelatinous zooplankton come and go seasonally, giving rise in even the most undisturbed circumstances to summer blooms. Even holoplanktonic species like ctenophores increase in number in the spring or summer when planktonic food is available in greater abundance. Beyond that basic life cycle-driven seasonal change in numbers, several other kinds of events appear to be increasing the numbers of jellies present in some ecosystems. Over recent decades, man's expanding influence on the oceans has begun to cause real change and there is reason to think that in some regions, new blooms of jellyfish are occurring in response to some of the cumulative effects of these impacts. The issue is not simple and in most cases there are few data to support our perceptions. Some blooms appear to be long-term increases in native jellyfish populations. A different phenomenon is demonstrated by jellyfish whose populations regularly fluctuate, apparently with climate, causing periodic blooms. Perhaps the most damaging type of jellyfish increase in recent decades has been caused by populations of new, nonindigenous species gradually building-up to `bloom' levels in some regions. Lest one conclude that the next millennium will feature only increases in jellyfish numbers worldwide, examples are also given in which populations are decreasing in heavily impacted coastal areas. Some jellyfish will undoubtedly fall subject to the ongoing species elimination processes that already portend a vast global loss of biodiversity. Knowledge about the ecology of both the medusa and the polyp phases of each life cycle is necessary if we are to understand the true causes of these increases and decreases, but in most cases where changes in medusa populations have been recognized, we know nothing about the field ecology of the polyps.  相似文献   

13.
Foam lines oriented parallel to shore are common features ofrocky shores. At times, the water coloration is different oneither side of the foam lines, suggesting they are associatedwith fronts. We investigated the effect of shore-parallel foamlines and associated fronts on distributions of holo- and meroplankton.We performed CTD transects to describe the fronts and carriedout vertical zooplankton tows to describe the distribution ofzooplankton relative to the fronts. Fronts were within tensof meters of shore and were apparently generated by the interactionof coastal currents with local topography. We sampled four sites(three coves and one open coastal site), some of which wereseparated by only a few hundred meters. At each site we foundshore-parallel foam lines and associated thermal fronts, butthe characteristics of the fronts were different at three sites,suggesting that three different mechanisms were generating thefronts. At two coves, the foam line and front appeared to bedue to the interaction of wind-driven currents from the northwith coastal topography. At the third cove, the front appearedto be due to the expansion of solar-heated surface waters outof the cove. The foam line and front at the open coastal siteappeared to be due to boundary mixing. At the coves, the distributionsof holoplankters, meroplankters and phytoplankton were clearlyaltered by the presence of the fronts. At the open coastal site,the front had less effect on the distribution of zooplankton.The coastal ocean is the source of new recruits to the intertidalzone and an important source of food in the form of phytoplanktonfor filter feeders. We hypothesize that these very nearshorefronts may play an important role in structuring intertidalcommunities with which they are associated.  相似文献   

14.
This study quantifies the occurrence of gelatinous zooplankton in the stomach contents of fishes from the southwest Atlantic Ocean (33°–55°S). More than 69,000 fish stomachs belonging to 107 species were examined. A total of 39 fishes were documented as consumers of gelatinous zooplankton, 23 of which were newly discovered. Three gelatinous organism consumption categories are recognized: (1) very frequent consumers (10 species, six of which were exclusive); frequent consumers (five species); and occasional consumers (26 species). Three types of gelatinous prey (ctenophores, salps and medusae) were found in the stomach contents of fishes. Ctenophores were consumed at high levels across almost the entire continental shelves of Argentina and Uruguay. Salps were frequent prey on the slope and southern shelf. In contrast, medusae were consumed in coastal areas, slopes and the southern shelf. Classification methods (group average sorting of the Bray–Curtis similarity measures based on log (X?+?1)-transformed percentage data) determined six areas where fishes predated on gelatinous organisms. SIMPER (similarity percentages) analysis determined which fishes contributed more to the consumption of gelatinous organisms. Results revealed that two fish species (Stromateus brasiliensis and Squalus acanthias) had high gelatinous zooplankton predation rates throughout the entire study area, while another six species (Patagonotothen ramsayi, Helicolenus dactylopterus lahillei, Macrourus holotrachys, Merluccius hubbsi, Schroederichthys bivius, and Macruronus magellanicus), while widely distributed, seemed to have specific areas where consumption occurred. This study not only provides new knowledge about the importance of gelatinous zooplankton in the diet of numerous fishes, but might also be valuable for planning and managing local fisheries.  相似文献   

15.
Parasites of planktonic cnidarians and ctenophores in the southern Atlantic Ocean are little known. The aim of this study was to describe three new metacercariae from jellyfish and ctenophores, and assess the importance of the gelatinous zooplankton as intermediate hosts in the life history of digeneans. During examination of zooplankton in Argentine Sea for digeneans that mature in fishes, two species of jellyfish (Phialidium sp. and Liriope tetraphylla Chamiso & Eysenhardt, 1821), and one ctenophore (Mnemiopsis mccradyi Mayer, 1900) were analyzed for parasites. The samples were obtained in Mar del Plata. Three metacercariae belonging to Faustulidae, Lepocreadiidae and Hemiuridae are described. The prevalence (percent of hosts infected) varied from 1.4–30% and the range of intensity (number of individuals of a parasite species in a single infected host) was from 1 to 30 for the different metacercariae. Given the important position of free-swimming cnidarians and ctenophores in the marine food web, and the great number of fishes that have been found with these organisms in their digestive tracts, their importance in the life histories of digeneans should not be underrated.  相似文献   

16.
Hyperia galba Montagu is associated with gelatinous zooplankton as are many species of the Hyperiidea. The hosts preferred in the European seas are the large scyphomedusaeAurelia aurita, Chrysaora hysoscella, Rhizostoma pulmo, Cyanea capillata andCyanea lamarckii, which harbour the first developmental stages. The anamorphic development produces young that are incapable of swimming at the time of hatching. They are characterized by an embryonic abdomen without extremities and external segmentation; the eyes are not completely developed and the mouth is primitive lacking bristles, molar and incisor. The postembryonic development, described in detail, is subdivided into two phases: the pantochelis phase and the protopleon phase; the former comprises only one stage; the latter can be subdivided into four stages. In the course of postnatal development the larval organs are reduced and characters typical of the adult are gradually differentiated.H. galba plays an important role as obligatory endoparasite of scyphomedusae at least during the first stages of development; without a host this amphipod cannot survive, neither benthically nor in the plankton. The transition from life in the female's marsupium to endoparasitism in the jellyfish generally occurs during stage of the postembryonic development which is the first stage of the protopleon phase. The specific adaptations of its reproductive biology to a parasitic mode of life such as moult inhibition under starvation, development of larval organs and the behavioural patterns of the females as well as the young are described. Further, the influence of external factors such as temperature and food supply on the course of development is examined. Dedicated to Prof. Dr. H. Mergner on the occasion of his 70th birthday.  相似文献   

17.
In pelagic systems, thin layers (discontinuities with narrow vertical extents and high concentrations of organisms) create patches of food, and aggregations of gelatinous zooplankton can exploit such resources. The establishment, maintenance, and trophic effects of these functional relationships depend on behavioral responses to thin layers by individuals, which remain largely unexplored. In this study, we used laboratory experiments to test the hypothesis that a common and abundant hydromedusa predator, Nemopsis bachei L. Agassiz, 1849, would respond similarly to salinity gradients with and without thin layers of algae and copepods. Approximately 75% of the hydromedusae remained in both types of discontinuities. These distributions were not created solely by passive responses related to osmoconformation or an inability to swim through salinity gradients because approximately 25% of hydromedusae swam through or away from salinity gradients or biological thin layers. Biological thin layers stimulated feeding. Feeding success was related directly to encounter rates and it was independent of swimming, as expected for an ambush predator. Feeding increased at higher prey densities, and capture, handling time, and ingestion were not saturated even at 150–200 copepods l−1. The proportion of N. bachei that ceased feeding and began swimming increased when encounters with prey decreased to approximately 2 encounters hydromedusa−1 10 min−1. Thus, hydromedusae may seek new patches of prey once encounter rates and subsequent feeding success fall below a threshold. Exposing N. bachei to salinity gradients with and without biological thin layers indicated that these hydromedusae will remain in discontinuities and exert predation pressure that should be considered when assessing trophic webs and estimating carbon flux.  相似文献   

18.
Decay of zooplankton patchiness generated at the sea surface   总被引:1,自引:0,他引:1  
Population interaction in the sea depends on local populationdensity, which can change rapidly under the influence of circulatorystructures such as Langmuir cells generated by wind stress.We investigated variation in local density of gelatinous zooplanktonat the sea surface during and after wind events in the southernLabrador Current. The first hypothesis we tested was that theonset of wind generates variation in local density of gelatinouszooplankton at the spatial scale of Langmuir circulation. Analysisof transects before and during a wind event showed no intensificationof variability at small (10 m) scales. The second hypothesiswas that spatial variation at the scale of Langmuir circulationdecays during calm periods. Loss of significant components ofvariability was observed along the latter part relative to theearlier part of two transects. The third hypothesis we testedwas that variability at larger spatial scales would exceed variabilityat smaller scales due to sweeping of small Langmuir cells intolarger cells. We found that spatial variability increased withspatial scale along transects made during a wind event. Basedon our observations we propose two hypotheses about the spatialstructure of gelatinous zooplankton at the sea surface. Thefirst is that the initial effect of a wind rising from a newdirection is to rapidly erase structure generated by a previouswind. The second hypothesis is that Langmuir circulation generatesvariability at identical spatial scales over several kilometres,but that the magnitude of this variation is not uniform overthese distances.  相似文献   

19.
In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops.  相似文献   

20.
Discontinuous structure in landscapes may cause discontinuous, aggregated species body-mass patterns, reflecting the scales of structure available to animal communities within a landscape. Empirical analyses have shown that the location of species within body mass aggregations, which reflect this scale-specific organization, is non-random with regard to several ecological phenomena, including species extinctions. The propensity of declining species to have body masses proximate to discontinuities suggests that transition zones between scaling regimes ultimately decreases the ecological fitness for some species. We test this proposition using vulnerable and unthreatened fish species in Mediterranean streams with differing levels of human impact. We show that the proximity to discontinuities in body mass aggregations (“distance-to-edge”) of more vs. less fit individuals within vulnerable and unthreatened populations differs. Specifically, regression analysis between the scaled mass index, a proxy of animal fitness, and distance-to-edge reveals negative and positive relationships for vulnerable and unthreatened species, respectively. That is, fitness is higher close to discontinuities in vulnerable populations and toward the center of body mass aggregation groups in unthreatened populations. Our results demonstrate the suitability of the discontinuity framework for scrutinizing non-random patterns of environmental impact in populations. Further exploration of the usefulness of this method across other ecosystems and organism groups is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号