首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the first days of development, maize roots showed considerable variation in the production of ethylene and the rate of elongation. As endogenous ethylene increases, root elongation decreases. When these roots are treated with the precursor of ethylene aminocyclopropane- 1-carboxylic acid (ACC), or inhibitors of ethylene biosynthesis 2-aminoethoxyvinyl glycine (AVG) or cobalt ions, the root elongation is also inhibited. Because of root growth diminishes at high or reduced endogenous ethylene concentrations, it appears that this phytohormone must be maintained in a range of concentrations to support normal root growth. In spite of its known role as inhibitor of ethylene action, silver thiosulphate (STS) does not change significantly the root elongation rate. This suggests that the action of ethylene on root elongation should occur, at least partially, by interaction with other growth regulators.Key words: 2-aminoethoxyvinyl glycine, cobalt, ethylene, root elongation, silver thiosulphate, Zea mays  相似文献   

2.
The sym 5 mutants of pea, Pisum sativum L. cv Sparkle, do not differ in growth habit from their normal parent and nodulate poorly at a root temperature of 20°C. If inhibitors of ethylene formation or action (Co2+, aminoethoxyvinylglycine, or Ag+) are added to the substrate, nodulation of the sym 5 mutants is increased. Similar treatments of four other mutant sym lines do not restore nodulation. When Ag+ is added to the substrate from 4 days before to 4 days after inoculation with rhizobia, nodulation of sym 5 mutants is increased. The roots of the mutant need only be exposed to Ag+ for 4 hours to significantly increase nodule numbers. The content of free 1-aminocyclopropane-1-carboxylic acid and the production of ethylene in the lateral roots of sym 5 mutants do not differ from Sparkle.  相似文献   

3.
Is the Diageotropic Tomato Ethylene Deficient?   总被引:3,自引:0,他引:3  
The production of ethylene by a mutant form of tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) with diageotropic shoot growth was compared with that from non-mutant, upright plants. No difference in the rate of production by segments of petiole or stem apex was observed. The amounts of ethylene produced by excised segments of petiole from diageotropic and upright plants in response to wounding were also comparable. When the roots of either kind of plant were exposed to anaerobic conditions, the production of ethylene increased in the petioles; in ordinary plants this was associated with epinastic curvature, while in diageotropic plants the direction of shoot extension became reorientated from the horizontal to a more upright position. Exogenous ethylene gas had similar effects. These results support the view that the mutant has a modified response mechanism to gravity and to ethylene rather than an abnormally slow rate of ethylene production in the shoot. Since applying inhibitors of ethylene action to non-mutant, upright plants did not induce diageotropism, endogenous ethylene seems unlikely to play a significant role in maintaining their upright orientation. The roots of both kinds of plant produced large amounts of ethylene, although the rate for diageotropic roots was about 37% less than that of roots from normal plants. Application of indol-3-ylacetic acid increased the production of ethylene by all roots but those from mutant plants were less responsive.  相似文献   

4.
Ethylene synthesis in vegetative tissues is thought to be controlled by indoleacetic acid (IAA). However, ethylene synthesis in the diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) was much less sensitive to IAA than in the normal variety (VFN8). Yet, mechanical wounding stimulated ethylene production by the mutant. The dgt tomato provides an opportunity to study the regulation of stress ethylene independent of IAA effects. Waterlogging (i.e. anaerobic stress) stimulated production of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in the roots. The ACC was transported to the shoot where it was converted to ethylene. The dgt mutant efficiently utilized ACC for ethylene synthesis under aerobic conditions. The results confirm that the genetic lesion in dgt is located at a step prior to the formation of ACC. Furthermore, induction of ethylene synthesis by anaerobic or mechanical stresses in this mutant is independent of IAA action.  相似文献   

5.
Lee KH  Larue TA 《Plant physiology》1992,100(3):1334-1338
R82 (sym-17), a stable mutant of Pisum sativum L. cv Sparkle, is described. The shoot growth of the mutant was less than that of its parent under light or dark growth conditions. Gibberellic acid treatment did not normalize the shoot growth of R82. The mutant had thick and short roots. It formed few nodules, but the specific nitrogenase activity was not affected. R82 produced and contained more ethylene than Sparkle. It also contained more free 1-amino-cyclopropane-1-carboxylic acid than did its parent in both the shoot and the root. The root tip of R82 had a lower activity of ethylene-forming enzyme than that of Sparkle, whereas the whole shoot of R82 had a similar activity. The sensitivity of R82 to exogenous ethylene was not more than that of Sparkle. Exogenous ethylene treatments did not make Sparkle mimic R82, and inhibitors of ethylene biosynthesis or action did not normalize the phenotype of R82. The data suggest that the primary effect of sym-17 is not the enhanced ethylene production.  相似文献   

6.
Diverse functions of ethylene in plants may depend on its ability to interact with other hormones. We studied the participation of ethylene in the regulation of accumulation and metabolism of cytokinins comparing ethylene-insensitive mutant plants of arabidopsis (Arabidopsis thaliana [L.] Heynh., etr1-1) with the plants of original ecotype Columbia (Col-0). Because cytokinins can regulate growth of both leaves and roots, we determined the weights of these organs and the ratio between them. The content of zeatin and its riboside in the roots of etr1-1 plants was two times greater than in Col-0 plants, which could be accounted for by inhibition of conversion of these forms of cytokinins into 9-N-glucosides. In the leaves of mutant plants, expression of IPT3 gene responsible for the synthesis of cytokinins was more intense than in Col-0 plants, which could also contribute to a rise in the content of cytokinins. In this case, the weight of roots in etr1-1 mutants was lower than in the plants of original ecotype. Because high concentrations of cytokinins can inhibit root growth, suppression of accumulation of their biomass in mutant plants may be related to a greater content of cytokinins therein. The obtained results suggest that ethylene can suppress accumulation of cytokinins and, thereby, maintain redistribution of biomass in favor of the roots, which is important for plant adaptation to a shortage of water and ions.  相似文献   

7.
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.  相似文献   

8.
Adventitious roots are vital for water and nutrient assimilation by cereal crops because they comprise the bulk of the fibrous root system. We isolated and analyzed a rice mutant, adventitious rootless 2 (arl2), which failed to initiate adventitious root primordia during early development. Its seminal root produced fewer lateral roots than from the wild type. This mutant also exhibited pleiotropic phenotypes of longer and thicker seminal roots, a different morphology for the first leaf, delayed heading, and a greater tiller angle. Physiological experiments showed that exogenous auxin and ethylene could rescue adventitious root growth, a response opposite that for two previously reported mutants, arl1 and gnom1. Activity in the auxin signal pathway and the polar auxin transport system was normal for arl2. Compared with the wild type, arl2 plants showed enhanced sensitivity to ethephon but decreased sensitivity to AgNO3, an inhibitor of ethylene. Genetics analysis demonstrated that this mutant is controlled by a single dominant gene; ARL2 was mapped within a 100-kb interval on the short arm of chromosome 2.  相似文献   

9.
Excised tomato roots infected with Meloidogyne javanica produced ethylene at 3-6 times the rate of noninfected roots. This increase in ethylene production started 5 days after inoculation. Gall growth and ethylene production in infected roots were accelerated by 1-aminocyclopropane-1-carboxylic acid (ACC), indole acetic acid (IAA), and ethrel known as ethylene production stimulators. When inhibitors of ethylene production, like aminoethoxyvinylglycine (AVG) or aminoxyacetic acid (AOA), or inhibitors of ethylene action like silver thiosulfate (STS), were applied, gall growth and ethylene production were inhibited. Enhanced expansion of parenchymatous cells was observed in sections from nematode-induced galls and ethylene-treated roots. Lignification of xylem elements and fibers in the vascular cylinder was markedly inhibited in the gall, compared with noninfected root tissue. Because ethylene is known to induce cell expansion and to inhibit lignification, it is suggested that this plant hormone plays a major role in the development of M. javanica-induced galls. Ethylene affects gall size by enhancing parenchymatous tissue development and allows expansion of giant cells and the nematode body by reducing tissue lignification.  相似文献   

10.
The outgrowth of root hairs from the epidermal cell layer is regulated by a strict genetic regulatory system and external growth conditions. Rice plants cultivated in water-logged paddy land are exposed to a soil ecology that differs from the environment surrounding upland plants, such as Arabidopsis and maize. To identify genes that play important roles in root-hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified, and the gene was isolated using map-based cloning and sequencing. The mutant harbored a point mutation at a splicing acceptor site, which led to truncation of OsFH1 (rice formin homology 1). Subsequent analysis of two additional T-DNA mutants verified that OsFH1 is important for root-hair elongation. Further studies revealed that the action of OsFH1 on root-hair growth is dependent on growth conditions. The mutant Osfh1 exhibited root-hair defects when roots were grown submerged in solution, and mutant roots produced normal root hairs in the air. However, root-hair phenotypes of mutants were not influenced by the external supply of hormones or carbohydrates, a deficiency of nutrients, such as Fe or P i , or aeration. This study shows that OsFH1 plays a significant role in root-hair elongation in a growth condition-dependent manner.  相似文献   

11.
Mutagenized populations of Arabidopsis thaliana seedlings were screened for plants capable of root growth on inhibitory concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Four of the mutant lines recovered from this screen display a defect in root gravitropism as well as hormone resistance. The aerial portions of these plants are similar to wild-type in appearance. Genetic analysis of these four mutants demonstrated that hormone resistance segregated as a recessive trait and that all four mutations were alleles of the auxin-resistant mutation aux1 [Maher HP, Martindale SJB (1980) Biochem Genet 18: 1041-1053]. These new mutants have been designated aux1-7, 1-12, 1-15, and 1-19. The sensitivity of wild-type and aux1-7 roots to indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, and ethylene was determined. The results of these assays show that aux1-7 plants require a 12-fold (indole-3-acetic acid) or 18-fold (2,4-dichlorophenoxyacetic acid) higher concentration of auxin than wild-type for a 50% inhibition of root growth. In addition, ethylene inhibition of root growth in aux1-7 plants is approximately 30% that of wild-type at saturating ethylene concentrations. These results indicate that aux1 plants are resistant to both auxin and ethylene. We have also determined the effect of ethylene treatment on chlorophyll loss and peroxidase activity in the leaves of aux1 and wild-type plants. No difference between mutant and wild-type plants was observed in these experiments, indicating that hormone resistance in aux1 plants may be limited to root growth. Our studies suggest that the AUX1 gene may have a specific function in the hormonal regulation of gravitropism.  相似文献   

12.
Inducible defenses that provide enhanced resistance to insect attack are nearly universal in plants. The defense-signaling cascade is mediated by the synthesis, movement, and perception of jasmonate (JA) and the interaction of this signaling molecule with other plant hormones and messengers. To explore how the interaction of JA and ethylene influences induced defenses, we employed the never-ripe (Nr) tomato mutant, which exhibits a partial block in ethylene perception, and the defenseless (def1) mutant, which is deficient in JA biosynthesis. The defense gene proteinase inhibitor (PIN2) was used as marker to compare plant responses. The Nr mutant showed a normal wounding response with PIN2 induction, but the def1 mutant did not. As expected, methyl JA (MeJA) treatment restored the normal wound response in the def1 mutant. Exogenous application of MeJA increased resistance to Helicoverpa zea, induced defense gene expression, and increased glandular trichome density on systemic leaves. Exogenous application of ethephon, which penetrates tissues and decomposes to ethylene, resulted in increased H. zea growth and interfered with the wounding response. Ethephon treatment also increased salicylic acid in systemic leaves. These results indicate that while JA plays the main role in systemic induced defense, ethylene acts antagonistically in this system to regulate systemic defense.  相似文献   

13.
Adventitious root formation is essential for cutting propagation of diverse species; however, until recently little was known about its regulation. Strigolactones and ethylene have both been shown to inhibit adventitious roots and it has been suggested that ethylene interacts with strigolactones in root hair elongation. We have investigated the interaction between strigolactones and ethylene in regulating adventitious root formation in intact seedlings of Arabidopsis thaliana. We used strigolactone mutants together with 1-aminocyclopropane-1-carboxylic acid (ACC) (ethylene precursor) treatments and ethylene mutants together with GR24 (strigolactone agonist) treatments. Importantly, we conducted a detailed mapping of adventitious root initiation along the hypocotyl and measured ethylene production in strigolactone mutants. ACC treatments resulted in a slight increase in adventitious root formation at low doses and a decrease at higher doses, in both wild-type and strigolactone mutants. Furthermore, the distribution of adventitious roots dramatically changed to the top third of the hypocotyl in a dose-dependent manner with ACC treatments in both wild-type and strigolactone mutants. The ethylene mutants all responded to treatments with GR24. Wild type and max4 (strigolactone-deficient mutant) produced the same amount of ethylene, while emanation from max2 (strigolactone-insensitive mutant) was lower. We conclude that strigolactones and ethylene act largely independently in regulating adventitious root formation with ethylene controlling the distribution of root initiation sites. This role for ethylene may have implications for flood response because both ethylene and adventitious root development are crucial for flood tolerance.  相似文献   

14.
In order to further address the known interaction between ethylene and components of the oxidative system, we have used the ethylene-insensitive Never ripe (Nr) tomato (Solanum lycopersicum L.) mutant, which blocks ethylene responses. The mutant was compared to the control Micro-Tom (MT) cultivar subjected to two stressful situations: 100 mM NaCl and 0.5 mM CdCl2. Leaf chlorophyll, lipid peroxidation and antioxidant enzyme activities in roots, leaves and fruits, and Na and Cd accumulation in tissues were determined. Although we verified a similar growth pattern and Na and Cd accumulation for MT and Nr, the mutant exhibited reduced leaf chlorophyll degradation following stress. In roots and leaves, the patterns of catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), superoxide dismutase (SOD) enzyme activity as well as malondialdehyde (MDA) and hydrogen peroxide (H2O2) production under the stressful conditions tested were very similar between MT and Nr mutant. However, Nr fruits showed increased H2O2 production, reduced and enhanced APX activity in NaCl and CdCl2, respectively, and enhanced GPOX in NaCl. Moreover, through non-denaturing PAGE, a similar reduction of SOD I band intensity in both, control MT and Nr mutant, treated with NaCl was observed. In leaves and fruits, a similar SOD activity pattern was observed for all periods, genotypes and treatments. Overall the results indicate that the ethylene signaling associated with NR receptor can modulate the biochemical pathways of oxidative stress in a tissue dependent manner, and that this signaling may be different following Na and Cd exposure.  相似文献   

15.
Roots of tomato seedlings can be induced to coil by treatment with ethylene. The extent of coiling is dependent on the level of ethylene to which the seedlings are exposed and can be prevented by the incorporation of Ag ions into the growing medium. In contrast to all other tomato mutants examined, roots of the mutant diageotropica do not reorientate their growth in response to ethylene. The results of an agar penetration test indicate that roots of this mutant are agravitropic. The relationship between gravitropism and root coiling, and the origin of the ethylene modified growth pattern is discussed.  相似文献   

16.
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.  相似文献   

17.
In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis.  相似文献   

18.
Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium) TAR2-LIKE gene (BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2lhypo). Counterintuitive however, Bdtar2lhypo mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2lhypo root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis.  相似文献   

19.
CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show that CUL3 modulates the emission of ethylene, a gaseous plant hormone that is an important growth regulator. A CUL3 hypomorphic mutant accumulates ACS5, the rate-limiting enzyme in ethylene biosynthesis and as a consequence exhibits a constitutive ethylene response. Second, we provide evidence that CUL3 regulates primary root growth by a novel ethylene-dependant pathway. In particular, we show that CUL3 knockdown inhibits primary root growth by reducing root meristem size and cell number. This phenotype is suppressed by ethylene-insensitive or resistant mutations. Finally, we identify a function of CUL3 in distal root patterning, by a mechanism that is independent of ethylene. Thus, our work highlights that CUL3 is essential for the normal division and organisation of the root stem cell niche and columella root cap cells.  相似文献   

20.
Chromosaponin I (CSI), a triterpenoid saponin isolated from pea, stimulates the growth of roots in Arabidopsis thaliana seedlings on wetted filter paper in the light for 14 d. The growth rates of roots in Columbia (Col) and Landsberg erecta (Ler) wild-types were 0.92 and 0.26 mm d(-1), respectively, and they were accelerated to 3.46 (Col) and 2.20 (Ler) mm d(-1) by treating with 300 microM CSI. The length of mature epidermal cells was increased by 1.8-fold (Col) and 2.81-fold (Ler) compared with control and the number of epidermal cells was increased by a factor of 1.65 (Col) and 2.12 (Ler). Treatment with 2-aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis, also increased cell length but not cell number. The effects of CSI on root growth were not detected in the ethylene-insensitive mutant ein2-1. CSI did not inhibit ethylene production but stimulated the growth of roots in ctr1-1, the constitutive triple response mutant for ethylene, indicating that CSI inhibits ethylene signaling, especially downstream of CTR1. In the GA-insensitive mutant gai and the mutant spy-3, in which the basal level of GA signaling is activated, CSI did not increase cell number, although both CSI and AVG stimulated cell elongation in these mutants. These results suggest that the inhibition of ethylene signaling is the cause of CSI-induced cell elongation. A possible involvement of both GA and ethylene signalings is discussed for the CSI-induced cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号