首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we described the use of riboflavin binding protein extracted from quail egg-white, as a new HPLC chiral stationary phase. In this study we show the further results obtained with the use of high-performance affinity chromatography to provide a better understanding of the chiral recognition mechanism for the observed enantioselectivity and to gain a deeper knowledge into the binding site that has been recently characterised by X-ray crystallography for chicken egg-white. High-performance affinity chromatography provides information on the potential protein structural changes occurring upon its immobilisation and enables competitive binding studies as well as the assessment of binding constants through frontal analysis experiments.  相似文献   

2.
The refolding kinetics of horse cyanometmyoglobin induced by concentration jump of urea was investigated by five optical probe stopped-flow methods: absorption at 422 nm, tryptophyl fluorescence at around 340 nm, circular dichroism (CD) at 222 nm, CD at 260 nm, and CD at 422 nm. In the refolding process, we detected three phases with rate constants of > 1 × 102 s?1, (4.5–9.3) S?1, and (2–5) × 10?3 s?1. In the fastest phase, a substantial amount of secondary structure (40%) is formed within the dead time of the CD stopped-flow apparatus (10.7 ms). The kinetic intermediate populated in the fastest phase is shown to capture a hemindicyanide, suggesting that a “heme pocket precursor” recognized by hemindicyanide must be constructed within the dead time. In the middle phase, most of secondary and tertiary structures, especially around the captured hemindicyanide, have been constructed. In the slowest phase, we detected a minor structural rearrangement accompanying the ligand-exchange reaction in the fifth coordination of ferric iron. We present a possible model for the refolding process of myoglobin in the presence of the heme group. © 1994 Wiley-Liss, Inc.  相似文献   

3.
The conformation and dynamics of a protein are essential in characterizing the protein folding/unfolding intermediate state. They are closely involved in the packing and site-specific interactions of peptide elements to build and stabilize the tertiary structure of the protein. In this study, it was confirmed that trypsin inhibitor obtained from seeds of bitter gourd (BGTI) adopted a peculiar but plausible conformation and dynamics in the unfolding intermediate state. The fluorescence spectrum of one of two tryptophan residues of BGTI, Trp9, shifted to the blue side in the presence of 2–3 M guanidine hydrochloride, although the other, Trp54, did not show this spectral shift. At the same time, the motional freedom of Trp9 revealed by a time-resolved fluorescence study decreased, suggesting that the segmental motion of this residue was more restricted. These results indicate that BGTI takes such a conformation state that the hydrophobic core and loop domains arranging Trp9 and Trp54 respectively are heterogeneously packed in the unfolding intermediate state.  相似文献   

4.
A partly folded state of hen egg-white lysozyme has been characterized in 50% DMSO. Low concentrations of DMSO (<10%) have little effect on the overall folded conformation of lysozyme as seen from 1H NMR chemical shift dispersion. At increasing DMSO concentrations (>10%) a cooperative transition of the structure to a new, partially folded state is observed. This transition is essentially complete by ∼50% DMSO. NMR studies show an overall decrease in chemical shift dispersion with marked broadening of many resonances. A substantial number of backbone and side chain–side chain NOEs suggests the presence of secondary and tertiary interactions in the intermediate state. Tertiary organization of the aromatic residues is also demonstrated by enhanced near-UV circular dichroism and limited exposure of tryptophans as monitored by iodide quenching of fluorescence. The intermediate state exhibits enhanced binding to hydrophobic dyes. Further, the structural transition from this state to a largely unfolded conformation is cooperative. H/D exchange rates of several amide protons and four indole protons of tryptophans (W28, W108, W111, and W123), measured by refolding from 50% DMSO at different time intervals reveal that protection factors are high for the helical domain, whereas NH groups in the triple stranded antiparallel β-sheet domain are largely solvent-exposed. An ordered hydrophobic core in the intermediate state comprising of helix A, helix B, and helix D is consistent with the high protection factors observed. The structured intermediate in 50% DMSO resembles the early kinetic intermediate observed in the refolding of hen egg white lysozyme, as well as a molten globule state of equine lysozyme at low pH. The results demonstrate the potential use of nonaqueous structure perturbing solvents like DMSO to stabilize partially folded conformations of proteins. Proteins 29:492–507, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Equilibrium and kinetic studies of the guanidine hydrochloride induced unfolding-refolding of dimeric cytoplasmic creatine kinase have been monitored by intrinsic fluorescence, far ultraviolet circular dichroism, and 1-anilinonaphthalene-8-sulfonate binding. The GuHCl induced equilibrium-unfolding curve shows two transitions, indicating the presence of at least one stable equilibrium intermediate in GuHCl solutions of moderate concentrations. This intermediate is an inactive monomer with all of the thiol groups exposed. The thermodynamic parameters obtained by analysis using a three-state model indicate that this intermediate is similar in energy to the fully unfolded state. There is a burst phase in the refolding kinetics due to formation of an intermediate within the dead time of mixing (15 ms) in the stopped-flow apparatus. Further refolding to the native state after the burst phase follows biphasic kinetics. The properties of the burst phase and equilibrium intermediates were studied and compared. The results indicate that these intermediates are similar in some respects, but different in others. Both are characterized by pronounced secondary structure, compact globularity, exposed hydrophobic surface area, and the absence of rigid side-chain packing, resembling the "molten globule" state. However, the burst phase intermediate shows more secondary structure, more exposed hydrophobic surface area, and more flexible side-chain packing than the equilibrium intermediate. Following the burst phase, there is a fast phase corresponding to folding of the monomer to a compact conformation. This is followed by rapid assembly to form the dimer. Neither of the equilibrium unfolding transitions are protein concentration dependent. The refolding kinetics are also not concentration dependent. This suggests that association of the subunits is not rate limiting for refolding, and that under equilibrium conditions, dissociation occurs in the region between the two unfolding transitions. Based upon the above results, schemes of unfolding and refolding of creatine kinase are proposed.  相似文献   

6.
The thermal denaturation of lysozyme dissolved in aqueous phosphate buffer (pH 5.1) and glycerol was studied by Fourier-transform infrared (FTIR) spectroscopy. In both solvents, a single temperature-induced conformational transition was observed but at the distinctly different temperatures of 73 °C in aqueous buffer and 94 ± 2 °C in glycerol. No changes in the secondary structure were observed in glycerol up to 90 °C. Thus, FTIR data were consistent with the formation of a highly ordered molten globule state at temperatures below 90 °C followed by lysozyme unfolding at higher temperatures in glycerol.  相似文献   

7.
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins.  相似文献   

8.
Chemical and thermal denaturation of calmodulin has been monitored spectroscopically to determine the stability for the intact protein and its two isolated domains as a function of binding of Ca2+ or Mg2+. The reversible urea unfolding of either isolated apo-domain follows a two-state mechanism with relatively low deltaG(o)20 values of approximately 2.7 (N-domain) and approximately 1.9 kcal/mol (C-domain). The apo-C-domain is significantly unfolded at normal temperatures (20-25 degrees C). The greater affinity of the C-domain for Ca2+ causes it to be more stable than the N-domain at [Ca2+] > or = 0.3 mM. By contrast, Mg2+ causes a greater stabilization of the N- rather than the C-domain, consistent with measured Mg2+ affinities. For the intact protein (+/-Ca2+), the bimodal denaturation profiles can be analyzed to give two deltaG(o)20 values, which differ significantly from those of the isolated domains, with one domain being less stable and one domain more stable. The observed stability of the domains is strongly dependent on solution conditions such as ionic strength, as well as specific effects due to metal ion binding. In the intact protein, different folding intermediates are observed, depending on the ionic composition. The results illustrate that a protein of low intrinsic stability is liable to major perturbation of its unfolding properties by environmental conditions and liganding processes and, by extension, mutation. Hence, the observed stability of an isolated domain may differ significantly from the stability of the same structure in a multidomain protein. These results address questions involved in manipulating the stability of a protein or its domains by site directed mutagenesis and protein engineering.  相似文献   

9.
The study of protein folding and unfolding pathways lends a fascinating dimension to protein biochemistry. Several models for protein folding have been postulated. Two powerful probes used in protein folding study are far UV-CD monitored stopped flow kinetics and pulse hydrogen exchange in conjunction with NMR. The formation of molten globule, which is an intermediate possessing secondary structure but not a well packed tertiary structure, is now emerging as a common feature on the folding pathway of many proteins. The molten globule is recognized by a class of molecules called chaperones which act as accelerators of protein folding. This article ends by elucidating why proteins are Nature's choice as catalysts.  相似文献   

10.
The current state of the problem of protein folding is reviewed with special attention to the novel molten globule state of the protein molecule, intermediate between the native and unfolded states. Experimental evidence on the existence of this state and its role in protein folding are compared with the sequential model of protein folding proposed by the author in 1972–1973.  相似文献   

11.
Juvenile hormone (JH) regulates insect development. JH present in the hemolymph is bound to a specific glycoprotein, juvenile hormone binding protein (JHBP), which serves as a carrier to deploy the hormone to target tissues. In this report structural changes of JHBP from Galleria mellonella induced by guanidine hydrochloride have been investigated by a combination of size-exclusion chromatography, protein activity measurements, and spectroscopic methods. Molecules of JHBP change their conformation from a native state via two unstable intermediates to a denatured state. The first intermediate appears in a compact state, because it slightly changes its molecular size and preserves most of the JHBP secondary structure of the native state. Although the second intermediate also preserves a substantial part of the secondary structure, it undergoes a change into a noncompact state changing its Stokes radius from approximately 30 to 39 A. Refolding experiments showed that JHBP molecules recover their full protein structure, as judged from the CD spectrum, fluorescence experiments, and JH binding activity measurements. The free energy of unfolding in the absence of the denaturant, DeltaG(D-N), is calculated to be 4.1 kcal mol(-1).  相似文献   

12.
The partly folded states of alpha-lactalbumin (alpha-LA) exposed to acid solution at pH 2.0 (A-state) or at neutral pH upon EDTA-mediated removal of the single protein-bound calcium ion (apo form) have been probed by limited proteolysis experiments. These states are nowadays commonly considered to be molten globules and thus protein-folding intermediates. Pepsin was used for proteolysis at acid pH, while proteinase K and chymotrypsin at neutral pH. The expectations were that these proteolytic probes would detect sites and/or chain regions in the partly folded states of alpha-LA sufficiently dynamic, or even unfolded, capable of binding and adaptation to the specific stereochemistry of the protease's active site. A time-course analysis of the proteolytic events revealed that the fast, initial proteolytic cuts of the 123-residue chain of alpha-LA in its A-state or apo form by the three proteases occur at the same chain region 39-54, the actual site(s) of cleavage depending upon the protease employed. This region in native alpha-LA encompasses the beta-sheets of the protein. Subsequent cleavages occur mostly at chain regions 31-35 and 95-105. Four fragment species of alpha-LA have been isolated by reverse-phase high-performance liquid chromatography, and their conformational properties examined by circular dichroism and fluorescence emission spectroscopy. The single chain fragment 53-103, containing all the binding sites for calcium in native alpha-LA and cross-linked by two disulfide bridges, maintains in aqueous buffer and in the presence of calcium ions a folded structure characterized by the same content of alpha-helix of the corresponding chain segment in native alpha-LA. Evidence for some structure was also obtained for the two-chain species 1-40 and 104-123, as well as 1-31 and 105-123, both systems being covalently linked by two disulfide bonds. In contrast, the protein species given by fragment 1-34 connected to fragment 54-123 or 57-123 via four disulfide bridges adopts in solution a folded structure with the helical content expected for a native-like conformation. Of interest, the proteolytic fragment species herewith isolated correspond to the structural domains and subdomains of alpha-LA that can be identified by computational analysis of the three-dimensional structure of native alpha-LA (Siddiqui AS, Barton GI, 1995, Protein Sci 4:872-884). The fast, initial cleavages at the level of the beta-sheet region of native alpha-LA indicate that this region is highly mobile or even unfolded in the alpha-LA molten globule(s), while the rest of the protein chain maintains sufficient structure and rigidity to prevent extensive proteolysis. The subsequent cleavages at chain segment 95-105 indicate that also this region is somewhat mobile in the A-state or apo form of the protein. It is concluded that the overall domain topology of native alpha-LA is maintained in acid or at neutral pH upon calcium depletion. Moreover, the molecular properties of the partly folded states of alpha-LA deduced here from proteolysis experiments do correlate with those derived from previous NMR and other physicochemical measurements.  相似文献   

13.
Ivanova E  Ball M  Lu H 《Proteins》2008,71(1):467-475
Zinc-finger proteins are among the most abundant proteins in eukaryotic genomes. Tim10 and all the small Tim proteins of the mitochondrial intermembrane space contain a consensus twin CX(3)C zinc-finger motif. Zn(2+) can bind to the reduced Tim10, but not disulphide bonded (oxidized) protein. However, the zinc-binding reaction of Tim10 and of zinc-finger proteins, in general, is ill-defined. In this study, the thermodynamic and kinetic properties of zinc-binding to reduced Tim10 were investigated using circular dichroism (CD), fluorescence spectrometry, and stopped-flow fluorescence techniques. At equilibrium, coupled with the use of protein fluorescence and metal chelators, the zinc-binding affinity was determined for Tim10 to be about 8 x 10(-10)M. Then, far UV CD was used to investigate the secondary structure change upon zinc-binding of the same set of protein samples at various free Zn(2+) concentrations. Comparison between the results of CD and fluorescence studies showed that the zinc-binding reaction is not a simple one-step process. It involves formation of a binding intermediate that is structurally as unfolded as the apoTim10; subsequently, a degree of folding is induced at increased zinc concentrations in the final complex. Next, the stopped-flow fluorescence technique was used to investigate the kinetic process of the binding reaction. Data analysis shows that the reaction has a single kinetic phase at a low free Zn(2+) concentration ( approximately 1 nM), and a double kinetic phase at a high free Zn(2+) concentration. The kinetic result is consistent with that of the studies at equilibrium. Therefore, a two-step reaction model mechanism is proposed, in which zinc-binding is regulated by the initial selective-binding of Zn(2+) to Cys followed by folding. Implication of the two-step zinc-binding mechanism for Zn(2+) trafficking in the cell is discussed.  相似文献   

14.
The proto-oncogene c-myc governs the expression of a number of genes targeting cell growth and apoptosis, and its expression levels are distorted in many cancer forms. The current investigation presents an analysis by proteolysis, circular dichroism, fluorescence and Biacore of the folding and ligand-binding properties of the N-terminal transactivation domain (TAD) in the c-Myc protein. A c-Myc sub-region comprising residues 1-167 (Myc1-167) has been investigated that includes the unstructured c-Myc transactivation domain (TAD, residues 1-143) together with a C-terminal segment, which appears to promote increased folding. Myc1-167 is partly helical, binds both to the target proteins Myc modulator-1 (MM-1) and TATA box-binding protein (TBP), and displays the characteristics of a molten globule. Limited proteolysis divides Myc1-167 in two halves, by cleaving in a predicted linker region between two hotspot mutation regions: Myc box I (MBI) and Myc box II (MBII). The N-terminal half (Myc1-88) is unfolded and does not alone bind to target proteins, whereas the C-terminal half (Myc92-167) has a partly helical fold and specifically binds both MM-1 and TBP. Although this might suggest a bipartite organization in the c-Myc TAD, none of the N and C-terminal fragments bind target protein with as high affinity as the entire Myc1-167, or display molten globule properties. Furthermore, merely linking the MBI with the C-terminal region, in Myc38-167, is not sufficient to achieve binding and folding properties as in Myc1-167. Thus, the entire N and C-terminal regions of c-Myc TAD act in concert to achieve high specificity and affinity to two structurally and functionally orthogonal target proteins, TBP and MM-1, possibly through a mechanism involving molten globule formation. This hints towards understanding how binding of a range of targets can be accomplished to a single transactivation domain.  相似文献   

15.
16.
The TEM-1 β-lactamase is a globular protein containing 12 proline residues. The folding mechanism of this enzyme was investigated by kinetic and equilibrium experiments with the help of fluorescence spectroscopy and circular dichroism. The equilibrium denaturation of the protein induced by guanidine hydrochloride occurs in two discrete steps, indicating the existence of a thermodynamically stable intermediate state. Thisstate is 5.2 ± 0.4 kcal/mol less stable than the native conformation and 5.7 ± 0.2 kcal/mol more stable than the fully denaturedprotein. This intermediate state exhibits a high content of native secondary structure elements but is devoid of specific tertiary organization; its relation to the “molten globule” is discussed. Refolding kinetic experimentsrevealed the existence of a transient intermediate conformation between thethermodynamically stable intermediate and the native protein. This transient intermediate appears rapidly during the folding reaction. It exhibits a secondary structure content very similar to that of the native protein and has also recovered a significant amount of tertiary organisation. The final refolding step of the TEM-1 β-lactamase, leading to the native enzyme, is dominated by two major slow kinetic phases which probablyreflect a very complex process kinetically limited by proline cis/transisomerization. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The partly folded states of protein members of the lysozyme (LYS)/alpha-lactalbumin (LA) superfamily have been analyzed by circular dichroism (CD) measurements and limited proteolysis experiments. Hen, horse, dog, and pigeon LYSs and bovine LA were used in the present study. These are related proteins of 123- to 129-amino-acid residues with similar three-dimensional structures but low similarity in amino acid sequences. Moreover, notable differences among them reside in their calcium-binding properties and capability to adopt partly folded states or molten globules in acid solution (A-state) or on depletion of calcium at neutral pH (apo-state). Far- and near-UV CD measurements revealed that although the structures of hen and dog LYS are rather stable in acid at pH 2.0 or at neutral pH in the absence of calcium, conformational transitions to various extents occur with all other LYS/LA proteins herewith investigated. The most significant perturbation of tertiary structure in acid was observed with bovine LA and LYS from horse milk and pigeon egg-white. Pepsin and proteinase K were used as proteolytic probes, because these proteases show broad substrate specificity, and therefore, their sites of proteolysis are dictated not by the specific amino acid sequence of the protein substrate but by its overall structure and dynamics. Although hen LYS at pH 2.0 was fully resistant to proteolysis by pepsin, the other members of the LYS/LA superfamily were cleaved at different rates at few sites of the polypeptide chain and thus producing rather large protein fragments. The apo-form of bovine LA, horse LYS, and pigeon LYS were attacked by proteinase K at pH 8.3, whereas dog and hen LYSs were resistant to proteolysis when reacted under identical experimental conditions. Briefly, it has been found that the proteolysis data correlate well with the extent of conformational transitions inferred from CD spectra and with existing structural informations regarding the proteins herewith investigated, mainly derived from NMR and hydrogen exchange measurements. The sites of initial proteolytic cleavages in the LYS variants occur at the level of the beta-subdomain (approximately chain region 34-57), in analogy to those observed with bovine LA. Proteolysis data are in agreement with the current view that the molten globule of the LYS/LA proteins is characterized by a structured alpha-domain and a largely disrupted beta-subdomain. Our results underscore the utility of the limited proteolysis approach for analyzing structure and dynamics of proteins, even if adopting an ensemble of dynamic states as in the molten globule.  相似文献   

18.
A few studies indirectly support the existence of an intermediate in the transition of Ca(2+)-saturated bovine alpha-lactalbumin (alpha-LA) from the native (N) to the acidic (A) state, known as the molten globule state. However, direct experimental evidence for the appearance of this intermediate has not been obtained. The signal of circular polarization of luminescence (CPL) is sensitive to fine conformational transitions because of its susceptibility to changes in the environmental asymmetry of fluorescent chromophores in their excited electronic states. In the present study, CPL measurements were applied using the intrinsic tryptophan fluorescence of alpha-LA as well as the fluorescence of 8-anilino-1-naphthalenesulfonic acid (ANS) bound to alpha-LA. CPL of tryptophan and ANS was measured in the pH range of 2.5-6 in order to find direct experimental evidence for the proposed intermediate. CPL (characterized by the emission anisotropy factor, g(em)) depends on the asymmetry of the protein molecular structure in the environment of the tryptophan and the ANS chromophores in the excited electronic state. The pH dependence of both the gab, absorption anisotropy factor determined by CD, and the ANS steady state fluorescence, showed a single transition at pH 3-3.7 as already reported elsewhere. This transition was interpreted as being a result of a change of the alpha-LA tertiary structure, which resulted in a loss of asymmetry of the environment of both the tryptophan residues and the ANS hydrophobic binding sites. The pH dependence of the tryptophan and ANS g(em) showed an additional conformational transition at pH 4-5, which coincided with the pKa of Ca2+ dissociation (pKa 5), as predicted by Permyakov et al. (1981, Biochem Biophys Res Commun 100:191-197). The titration curve showed that there is a pH range between 3.7 and 4.1 in which alpha-LA exists in an intermediate state between the N- and A-state. We suggest that the intermediate is the premolten globule state characterized by a reduced Ca2+ binding to the alpha-LA, native-like tertiary structure, and reduced asymmetric fluctuation of the tertiary structure on the nanosecond time scale. This intermediate resembles the "critical activated state" theoretically deduced by Kuwajima et al. (1989, J Mol Biol 206:547-561). The present study demonstrates the power of CPL measurements for the investigation of folding/unfolding transitions in proteins.  相似文献   

19.
Staphylococcal nuclease, at low pH and in the presence of high salt concentrations, has previously been proposed to exist in a partially folded or molten globule form called the "A-state" (Fink et al., 1993, Protein Sci 2:1155-1160). We have found that the A-state of nuclease at pH 2.1 in the presence of moderate to high salt concentrations and at low temperature exists in a substantially folded form structurally more similar to a native state. The A-state has the far-UV circular dichroism spectra characteristic of the native protein, which indicates that it has a large degree of secondary structure. Upon heating, the A-state denatures with a sigmoidal change in far-UV ellipticity and an observable peak in a differential scanning calorimeter trace, indicating that it is thermodynamically distinct from the denatured state. Three different mutations in a residue normally buried in the protein's core stabilize or destabilize the A-state in the same way as they affect the denaturation of the native state. The A-state must, therefore, contain at least some tertiary packing of side chains. Unlike the native state, which shows cold denaturation at low temperatures, the A-state is most stable at temperatures below 0 degrees C.  相似文献   

20.
Among the most common interaction motifs between nuclear proteins is the recognition of one or more amphipathic helices. In an effort to determine principles behind this recognition, we have investigated the interaction between the p160 coactivator protein ACTR and the ACTR-binding domain of the CREB-binding protein, CBP. The two proteins use relatively small portions of their primary sequences to form a single synergistically folded domain consisting of six intertwined alpha-helices, three from each protein. Neither of the component polypeptides forms a cooperatively folded domain in isolation. However, a considerable amount of residual secondary structure remains in the isolated CBP domain according to CD spectroscopy. Chemical denaturation, differential scanning calorimetry, and ANS binding experiments demonstrate that the isolated CBP domain is not entirely unfolded but forms a helical state with the characteristics of a molten globule. Mutations probing the functional and energetic significance of a buried intermolecular Arg-Asp salt bridge in the interface of the protein complex suggest that these residues are tuned for functional discrimination and not strictly for binding affinity or stability. These results suggest a mechanism for formation of the complex where the unfolded ACTR domain interacts with the partly folded CBP domain in a rapid and specific manner to form the final stable complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号