首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The 23-amino acid extracellular domain of matrix 2 protein (M2e) and the internal nucleoprotein (NP) of influenza are highly conserved among viruses and thus are promising candidate antigens for the development of a universal influenza vaccine. Various M2e- or NP-based DNA or viral vector vaccines have been shown to have high immunogenicity; however, high cost, complicated immunization procedures, and vector-specific antibody responses have restricted their applications. Immunization with an NP–M2e fusion protein expressed in Escherichia coli may represent an alternative strategy for the development of a universal influenza vaccine.

Methodology/Principal Findings

cDNA encoding M2e was fused to the 3′ end of NP cDNA from influenza virus A/Beijing/30/95 (H3N2). The fusion protein (NM2e) was expressed in E. coli and isolated with 90% purity. Mice were immunized with recombinant NM2e protein along with aluminum hydroxide gel and/or CpG as adjuvant. NM2e plus aluminum hydroxide gel almost completely protected the mice against a lethal (20 LD50) challenge of heterologous influenza virus A/PR/8/34.

Conclusions/Significance

The NM2e fusion protein expressed in E. coli was highly immunogenic in mice. Immunization with NM2e formulated with aluminum hydroxide gel protected mice against a lethal dose of a heterologous influenza virus. Vaccination with recombinant NM2e fusion protein is a promising strategy for the development of a universal influenza vaccine.  相似文献   

2.
The three species of the genus Bordetella-B. pertussis, B. parapertussis, and B. bronchiseptica-have many antigens in common. Studies on representative strains of these species have shown that there are only a few specific antigens in each species. Whole-cell vaccines and extracts from B. pertussis contained specific mouse-protective antigen and a histamine-sensitizing factor. In addition, whole-cell vaccines and some saline extracts protected mice against intracranial challenge with B. bronchiseptica. Cells and a saline extract of B. parapertussis also protected against B. bronchiseptica but not against B. pertussis. Whole cells of B. bronchiseptica protected against B. bronchiseptica, but only one of three saline extracts protected against this challenge. Neither whole cells nor saline extracts from B. bronchiseptica protected against B. pertussis. The antigen in B. pertussis responsible for cross-protection against B. bronchiseptica was less resistant to heat than the protective antigen in B. bronchiseptica. Since histamine-sensitizing factor was not detected in B. bronchiseptica or B. parapertussis cells or extracts, this factor is not required to protect mice against B. bronchiseptica challenge. Whether B. pertussis vaccines protected against B. bronchiseptica by a nonspecific mechanism was not established, but it is clear that the specific antigen responsible for protection against B. pertussis was found only in B. pertussis and not in B. bronchiseptica or B. parapertussis.  相似文献   

3.
Currently, an assay based on fatal sensitization of mice to histamine challenge is widely used for testing absence of residual pertussis toxin in acellular pertussis containing vaccines. For replacement of this lethal end-point assay, an alternative method based on body temperature measurement in mice has been presented, and in this study the specificity and detection limit of a dermal temperature-based assay were assessed. Test preparations containing pertussis toxin were prepared in aluminum-adjuvanted pertussis toxoid vaccine and injected intraperitoneally in histamine sensitive mice. Later the mice were challenged with histamine and the pertussis toxin-induced decrease in dermal temperature recorded. By comparison of mice treated with pertussis toxoid vaccine spiked with pertussis toxin with mice treated with pertussis toxoid vaccine alone, the assay gave a response that specifically could detect presence of pertussis toxin. The acellular pertussis containing vaccine did not interfere with the pertussis toxin-induced temperature response recorded. In tests for presence of pertussis toxin in the pertussis vaccine preparation, the detection limit of the assay was estimated to approximately 5 ng pertussis toxin per human dose of pertussis toxoid. The dermal temperature-based assay was found to be a valid method to be applied in routine quality control of vaccines.  相似文献   

4.
Neisseria meningitidis and Bordetella pertussis are Gram-negative bacterial pathogens that can cause serious diseases in humans. N. meningitidis outer membrane vesicle (OMV) vaccines and whole cell pertussis vaccines have been successfully used in humans to control infections with these pathogens. The mechanisms behind their effectiveness are poorly defined. Here we investigated the role of Toll-like receptor (TLR) 2 and TLR4 in the induction of immune responses in mice after immunization with these vaccines. Innate and adaptive immune responses were compared between wild type mice and mice deficient in TLR2, TLR4, or TRIF. TRIF-deficient and TLR4-deficient mice showed impaired immunity after immunization. In contrast, immune responses were not lower in TLR2-/- mice but tended even to be higher after immunization. Together our data demonstrate that TLR4 activation contributes to the immunogenicity of the N. meningitidis OMV vaccine and the whole cell pertussis vaccine, but that TLR2 activation is not required.  相似文献   

5.
The increasing number of pertussis cases reported on the last twenty years and the existence of new acellular vaccines reinforce the need of research for experimental models to assure the quality of available pertussis vaccines. In this study, allotments of whole-cell and acellular pertussis vaccines were tested through the Intranasal Challenge Model (INM) using conventional NIH mice. The results have been compared to those achieved by the "Gold standard" Intracerebral Challenge Model (ICM). In contrast to ICM, INM results did not show intralaboratorial variations. Statistical analysis by Anova and Ancova tests revealed that the INM presented reproducibility and allowed identification and separation of different products, including three-component and four-component accellular pertussis vaccines. INM revealed differences between pertussis vaccines. INM provides lower distress to the mice allowing the reduction of mice number including the possibility of using conventional mice (less expensive) under non-aseptic environment. Thus, INM may be used as an alternative method of verifying the consistence of allotment production, including acellular pertussis vaccines.  相似文献   

6.
The study is based on assumption that B. pertussis strains harbouring different allele variants of genes encoding subunit S1 of pertussis toxin and pertactin might be eliminated with different efficiency from lung tissue of mice which were immunized with whole-cell and acellular pertussis vaccines. It has been assumed that strains containing combinations of genes alleles which were not prevalent since 1990-ties are consisting of mutated strains in respect to pertussis toxin subunit S1 and pertactin, and are capable to decrease efficiency of pertussis vaccines. Experiments performed in vivo dealt with activity of tested vaccines against B. pertussis strains of different combinations of ptxS1/prn. The study indicated for lowered efficiency of whole-cell and acellular pertussis vaccines in elimination of mutated strains of B. pertussis from animal lung tissue in comparison with strains currently used for vaccine production.  相似文献   

7.
The influence of immunization with pertussis vaccines differing in toxicity on the intensity of the formation of antibodies to heterologous antigens (S. typhi Vi-antigen) and on the resistance of the body to natural infection (S. typhimurium) was studied in mice. The toxicity of pertussis vaccines was found to be related to their capacity for changing immune response to heterologous antigen. In mice showing pronounced toxicosis the injection of pertussis vaccine resulted in a decrease in their capacity for Vi-hemagglutinin formation. The appearance of a definite degree of resistance ot S. typhimurium was observed in mice previously immunized with pertussis vaccine possessing pronounced toxic properties. Nevertheless, the appearance of enhanced resistance to infection was observed only in the animals previously immunized with a nontoxic preparation.  相似文献   

8.
《Biologicals》2014,42(2):101-108
Speculation that the Japanese modified intra-cerebral challenge assay, which is used in several countries for control of acellular pertussis vaccines, depends on the presence of small amounts of active pertussis toxin led to an assumption that it may not be appropriate for highly toxoided or genetically detoxified vaccines. Consequently, at the recommendation of a World Health Organisation AD Hoc Working Group on mouse protection models for testing and control of acellular pertussis vaccine, the effect of pertussis toxin on the modified intra-cerebral challenge assay (modified Kendrick, MICA) was evaluated in an international collaborative study. Results of this study showed that for genetically detoxified vaccines both with and without active pertussis toxin the MICA clearly distinguished mice vaccinated with acellular vaccines from unvaccinated mice and gave a significant dose–response relationship. However, vaccine samples containing active pertussis toxin (5 or 50 ng/single human dose) appeared to be more potent than the equivalent sample without active pertussis toxin. Similar results were also given by two respiratory infection models (intranasal and aerosol) included in the study. The results also indicated that the effect of pertussis toxin may vary depending on mouse strain.  相似文献   

9.
Synthetic antigens employed in experimental synthetic vaccines are generally small haptenic peptides. Therefore, effective immunization with these antigens usually requires the use of an immunogenic carrier. Tetanus toxoid has been proposed for use as a carrier in future synthetic vaccines due to its high immunogenicity and acceptance for human use. Previous studies employing standard hapten/carrier systems such as DNP/KLH have demonstrated, however, that an epitope-specific suppression occurs when mice previously primed with carrier are subsequently immunized with an haptenic epitope conjugated to the same carrier. These same studies have shown that Bordetella pertussis vaccine administered at the time of carrier priming abrogates epitopic suppression. In the present investigation, epitopic suppression was studied in a synthetic vaccine model employing tetanus toxoid as a carrier. Results from these studies indicated that mice primed with tetanus toxoid 1 month before immunization with a peptide-tetanus toxoid conjugate exhibited enhanced secondary anti-tetanus toxin responses but decreased anti-peptide responses. Furthermore, injection of pertussis vaccine or purified B. pertussis toxin or endotoxin at the time of carrier priming could block the establishment of epitopic suppression. Administration of B. pertussis components enhanced antibody responses to both the carrier and the synthetic peptides as compared with responses of control animals. In addition, administration of an adjuvant-active nonpyrogenic derivative of muramyl dipeptide. Murabutide, with carrier priming reduced epitopic suppression of anti-peptide responses. B. pertussis toxin or endotoxin administered to mice previously suppressed by carrier priming with the first injection of carrier-peptide conjugate overcame epitopic suppression with resultant titers of anti-peptide antibody equal to or greater than nonsuppressed controls. These results suggest that the use of adjuvants with future synthetic vaccines may contribute the additional advantage of overcoming epitopic suppression, thus permitting the use of common, well-tolerated carrier systems such as tetanus toxoid in synthetic vaccine preparations.  相似文献   

10.
Pertussigen [pertussis toxin (Ptx)] from Bordetella pertussis, when detoxified, induces protection in mice to intracerebral challenge (ic) with virulent B. pertussis. In its native form, minute nonprotective doses promote the development of immunity induced by other antigens of B. pertussis. As little as 4 ng of Ptx, given with a nonprotective dose of 8 X 10(7) killed cells of the phase III Sakairi strain, promoted detectable protection to ic challenge. Native Ptx in doses of 0.4 to 400 ng did not protect mice, and vaccines made from strains not producing Ptx induced only weak protection. The marked enhancing action of Ptx was also observed with 5 micrograms of purified filamentous hemagglutinin and with vaccines made from other species of the Bordetella genus, such as B. parapertussis and B. bronchiseptica, but it was not observed with B. pertussis endotoxin. In addition, Ptx was still effective when given as late as 7 days after the vaccine. Antibodies to surface antigens of the challenge strain were demonstrated in sera of mice immunized with vaccines prepared with the different Bordetella species tested, but antibodies to Ptx were detected only in the sera of mice immunized with the wild-type B. pertussis strains. Glutaraldehyde detoxified Ptx does not have this action. Pretreatment of normal mice with Ptx, also enhanced the protective action of a mouse antiserum to a wild-type strain of B. pertussis. These observations show that antigens other than Ptx are responsible for the protection, and that Ptx acts non-specifically to enhance the mouse protective action of those antigens.  相似文献   

11.
We have identified a new mutant mouse that we have named new mouse neurological mutant 3 (NM3); it may be a useful model to understand the underlying molecular and genetic basis of Parkinson's disease (PD). A mouse carrying the NM3 mutation arose spontaneously in an RIIIS/J breeding colony and was identified as having a movement disorder. Upon neurological examination of these mice, their movement was found to be slow and abnormal, with characteristic choreaform and bradykinetic-type movements, typical of PD. The importance of the gene mutation in NM3 in the molecular pathway involved in this pathology is underscored by the fact that these mice do not survive past weaning age if they are homozygous for the genetic mutation. We localized the gene mutation by positional cloning and genetic mapping to mouse chromosome 2 in an area that corresponds to human chromosome 2q24-31, which does not contain any known genes associated with PD. However, there was a significant decrease of 15-20% in the levels of dopamine, and its principal metabolite, 3,4-dihydroxyphenylacetic acid, in the midbrain of affected mice. Low concentrations of these substances are associated with PD in human patients, making these mutant mice candidates for studies of this disease.  相似文献   

12.
The injection of whole cell pertussis vaccine into mice produced a biphasic fever reaction with two peaks appearing after about one and four hours, respectively. A method for the quantitative determination of each peak fever activity was developed and the factor responsible for each activity was investigated. The first and the second peak fever activities did not parallel each other in individual vaccines. The earlier fever activity appeared to correlate with endotoxin activity in individual vaccines while the later appeared to correlate with histamine-sensitizing factor (HSF) activity. The later peak fever activity was greatly reduced by heating the vaccine at 100 degrees C for 30 min while the first was little affected by such treatment. It was concluded that the fever activity of pertussis vaccine in mice may be ascribed to the combined actions of endotoxin and a heat-labile substance, possibly HSF.  相似文献   

13.
Respiratory pathogens are amongst the world's most successful killers. Tuberculosis kills approximately 2 million individuals each year, and pertussis is responsible for roughly 300,000 annual deaths. Although the two diseases are fundamentally different in the expression of their pathogenesis and in the biology of their causative agents, a common heterologous prime/boost vaccination strategy is proposed, using live attenuated vaccines against tuberculosis (the already existing BCG) and pertussis (a novel attenuated Bordetella pertussis strain) early in life for priming, followed by a booster with acellular vaccines, based on the novel heparin-binding haemagglutinin for tuberculosis, and already available acellular vaccines against pertussis.  相似文献   

14.
Studies concerned evaluation of differences between parameters of cell-mediated immunity in mice, induced with whole-cell and acellular pertussis vaccines with subsequent challenge with B. pertussis strains harbouring different ptxS1/prn allele genes. In the study, concentrations of IFN-gamma/Il-2 and 1l-4/Il-5 in supernatants of cultured mice splenocytes have been determined to evaluate differences in Th1 or Th2 lymphocytes subpopulation response. Simultaneously, studies of intracellular expression of genes encoding of Il-2, Il-12, IFN-gamma and Il-4, Il-5, Il-10, Il-13 in mice splenocytes, and genes encoding factors involved in inflammatory process in the lung tissue (GM-CSF, TNF-alpha, Il-1beta, Il-6 i TGF-beta) have been performed on RNA level. The obtained results, confirmed high polarization of immunological response toward Th1 in mice immunized with DTP vaccine with whole-cell pertussis component, and toward Th2 in mice immunized with acellular pertussis vaccine. Inflammatory process in the lung tissue was more pronounced in animals immunized with whole-cell pertussis vaccine. There were no quantitative differences of analysed factors involved in the immune response among mice challenged B. pertussis strains containing different ptxS1/prn composition.  相似文献   

15.
16.
The behavioural response to the sex pheromones in the externally voided urine of field voles (Microtus arvalis) and laboratory mice (CFLP, CBA strains) although specific for species showed no strain specificity. Bladder urine (free of accessory sex-gland secretions) and the preputial glands of CFLP and CBA mice contain sex attractants. Ether extracts made of blood of male CFLP mice attracted CFLP female mice.  相似文献   

17.
A new assay method has been developed for the quantitative estimation of the inhibitory effect of pertussis vaccine on epinephrine-induced hyperglycaemia in mice. The statistical analysis of the assay was based on logarithm-transformed estimates of the blood glucose levels. The method was sufficiently sensitive to detect the activity of 0.004 millilitre of commercial combined diphtheria-tetanus-whole cell pertussis vaccine. The estimated common variance was as small as 0.0034 and the assay was highly reproducible. Among commercial vaccines there was a significant difference in activity. The activity of a stock pertussis vaccine was inactivated by 5 mM glutaraldehyde at 37 degrees C for 30 min, but resisted treatment with 40 mM formaldehyde at 37 degrees C for 5 days. The extent of inactivation with the chemicals was calculated by a parallel line assay as the activity relative to that of untreated control pertussis vaccine.  相似文献   

18.
Lipopolysaccharide is one of the major constituents of the Gram-negative bacterial outer membrane and is, due to its endotoxic activity, responsible for the relatively high reactogenicity of whole-cell vaccines. In addition, lipopolysaccharide has strong immune stimulating properties, which makes it, potentially, an interesting vaccine component. In a previous study, we have shown that expression of two lipopolysaccharide-modifying enzymes, i.e., PagP and PagL, modulates the endotoxic activity of the Gram-negative bacterium Bordetella pertussis, the causative agent of whooping cough. To assess the consequences of PagP and PagL expression on the efficacy and reactogenicity of whole-cell pertussis vaccines, we have immunised mice and challenged them intranasally with wild-type B. pertussis. Vaccine efficacy, B. pertussis-specific antibody responses, and cytokine profiles were evaluated. The results show that expression of PagL, but not of PagP, significantly increases vaccine efficacy without altering vaccine reactogenicity. Therefore, PagL-expressing B. pertussis strains may form a basis for the development of a new and safer whole-cell pertussis vaccine, as higher vaccine efficacies may allow a reduced vaccine dosage. These data show, for the first time, that lipopolysaccharide composition is an important determinant for the efficacy of whole-cell pertussis vaccines.  相似文献   

19.
Recent clinical trials have shown that the new generation of acellular pertussis vaccines (Pa) can confer protection against whooping cough with negligible adverse reactions. We have compared the effects of pertussis whole cell and acellular vaccines on pulmonary immune responses after aerosol challenge in a murine model of infection. Mice were vaccinated with PBS, Pw or Pa and challenged with Bordetella pertussis by the aerosol route. Cytokine gene expression was analysed from lung tissue and cells; lung lymphocytes were re-stimulated in vitro and cytokines produced measured. The results obtained are consistent with the proposal that a strong Th-1 response is associated with bacterial clearance in both the non-vaccinated and Pw vaccinated mice. The acellular vaccine treated mice cleared the bacterial challenge (with an intermediate efficacy) in the presence of low levels of any of the cytokines assessed. This suggests that Pa protects via a Th-2 independent mechanism.  相似文献   

20.
The results of the weight gain test on mice have shown that acellular pertussis vaccine is less toxic than the pertussis component of adsorbed diphtheria-pertussis-tetanus (DPT) vaccine due to a lower content of endotoxin in the acellular vaccine; but the leukocytosis-promoting and histamine-sensitizing activities of JNIH-6 and adsorbed DPT vaccines are indicative of incomplete inactivation of Bordetella pertussis toxin. The content of incompletely inactivated B. pertussis toxin is practically the same in both preparations, constituting 1/100-1/200 of the calculated initial activity. For this reason, the use of the new pertussis vaccine also involves a risk of development of serious postvaccinal reactions and/or complications caused by this toxin. Search for the optimum method of inactivation of B. pertussis main toxin should be continued. As shown by the enzyme immunoassay, acellular pertussis vaccine used in the same immunizing dose as adsorbed DPT vaccine induces a more intensive immune response to hemagglutinin and B. pertussis toxin. This is due to higher residual toxicity of the corpuscular component of adsorbed DPT vaccine. Induction of antibodies to B. pertussis toxin has been shown to decrease in response to injection of acellular pertussis vaccine containing a certain residual amount of incompletely inactivated B. pertussis toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号