首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用脱氧核糖降解法研究了CuZn-SOD对几种·OH产生系统的作用机理.结果证明:SOD对Fe(3+)·O·H2O2系统中·OH的产生有明显的抑制作用,而失活SOD或BSA对它的抑制作用不大;在Fe(2+)·H2O2和CU(2+)·H2O2系统中,SOD、失活SOD和BAS均能抑制·OH的产生;在Fe(2+)·O系统中,SOD对·OH产生作用不大,而失活SOD或BSA对它有明显的抑制作用.由此推测SOD对·OH形成可能有三方面的影响:1.对O的清除作用,阻断Haber-Weiss反应;2.对金属离子的络合作用,降低·OH的产额;3.促进H2O2的积累,加快Fenton反应.  相似文献   

2.
Despite previous detection of hydroxyl radical formation during iron deposition into ferritin, no reports exist in the literature concerning how it might affect ferritin function. In the present study, hydroxyl radical formation during Fe(II) oxidation by apoferritin was found to be contingent on the "ferroxidase" activity (i.e., H subunit composition) exhibited by apoferritin. Hydroxyl radical formation was found to affect both the stoichiometry and kinetics of Fe(II) oxidation by apoferritin. The stoichiometry of Fe(II) oxidation by apoferritin in an unbuffered solution of 50 mM NaCl, pH 7.0, was approximately 3.1 Fe(II)/O(2) at all iron-to-protein ratios tested. The addition of HEPES as an alternate reactant for the hydroxyl radical resulted in a stoichiometry of about 2 Fe(II)/O(2) at all iron-to-protein ratios. HEPES functioned to protect apoferritin from oxidative modification, for its omission from reaction mixtures containing Fe(II) and apoferritin resulted in alterations to the ferritin consistent with oxidative damage. The kinetic parameters for the reaction of recombinant human H apoferritin with Fe(II) in HEPES buffer (100 mM) were: K(m) = 60 microM, k(cat) = 10 s(-1), and k(cat)/K(m) = 1.7 x 10(5) M(-1) x (-1). Collectively, these results contradict the "crystal growth model" for iron deposition into ferritin and, while our data would seem to imply that the ferroxidase activity of ferritin is adequate in facilitating Fe(II) oxidation at all stages of iron deposition into ferritin, it is important to note that these data were obtained in vitro using nonphysiologic conditions. The possibility that these findings may have physiological significance is discussed.  相似文献   

3.
The reactions of cerium(IV) and the hydroxyl radical [generated from iron(ii)/H2O2] with bovine serum albumin (BSA) have been investigated by EPR spin trapping. With the former reagent a protein-derived thiyl radical is selectively generated; this has been characterized via the anisotropic EPR spectra observed on reaction of this radical with the spin trap DMPO. Blocking of the thiol group results in the loss of this species and the detection of a peroxyl radical, believed to be formed by reaction of oxygen with initially-generated, but undetected, carbon-centred radicals from aromatic amino acids. Experiments with a second spin trap (DBNBS) confirm the formation of these carbon-centred species and suggest that damage can be transferred from the thiol group to carbon sites in the protein. A similar transfer pathway can be observed when hydroxyl radicals react with BSA.

Further experiments demonstrate that the reverse process can also occur: when hydroxyl radicals react with BSA, the thiol group appears to act as a radical sink and protects the protein from denaturation and fragmentation through the transfer of damage from a carbon site to the thiol group. Thiol-blocked BSA is shown to be more susceptible to damage than the native protein in both direct EPR experiments and enzyme digestion studies. Oxygen has a similar effect, with more rapid fragmentation detected in its presence than its absence.  相似文献   

4.
Copper and iron are two widely studied transition metals associated with hydroxyl radical (˙OH) generation, oxidative damage, and disease development. Because antioxidants ameliorate metal-mediated DNA damage, DNA gel electrophoresis assays were used to quantify the ability of ten selenium-containing compounds to inhibit metal-mediated DNA damage by hydroxyl radical. In the Cu(I)/H(2)O(2) system, selenocystine, selenomethionine, and methyl-selenocysteine inhibit DNA damage with IC(50) values ranging from 3.34 to 25.1 μM. Four selenium compounds also prevent DNA damage from Fe(II) and H(2)O(2). Additional gel electrophoresis experiments indicate that Cu(I) or Fe(II) coordination is responsible for the selenium antioxidant activity. Mass spectrometry studies show that a 1?:?1 stoichiometry is the most common for iron and copper complexes of the tested compounds, even if no antioxidant activity is observed, suggesting that metal coordination is necessary but not sufficient for selenium antioxidant activity. A majority of the selenium compounds are electroactive, regardless of antioxidant activity, and the glutathione peroxidase activities of the selenium compounds show no correlation to DNA damage inhibition. Thus, metal binding is a primary mechanism of selenium antioxidant activity, and both the chemical functionality of the selenium compound and the metal ion generating damaging hydroxyl radical significantly affect selenium antioxidant behavior.  相似文献   

5.
The DNA-binding proteins from starved cells (Dps) are a family of proteins induced in microorganisms by oxidative or nutritional stress. Escherichia coli Dps, a structural analog of the 12-subunit Listeria innocua ferritin, binds and protects DNA against oxidative damage mediated by H(2)O(2). Dps is shown to be a Fe-binding and storage protein where Fe(II) oxidation is most effectively accomplished by H(2)O(2) rather than by O(2) as in ferritins. Two Fe(2+) ions bind at each of the 12 putative dinuclear ferroxidase sites (P(Z)) in the protein according to the equation, 2Fe(2+) + P(Z) --> [(Fe(II)(2)-P](FS)(Z+2) + 2H(+). The ferroxidase site (FS) bound iron is then oxidized according to the equation, [(Fe(II)(2)-P](FS)(Z+2) + H(2)O(2) + H(2)O --> [Fe(III)(2)O(2)(OH)-P](FS)(Z-1) + 3H(+), where two Fe(II) are oxidized per H(2)O(2) reduced, thus avoiding hydroxyl radical production through Fenton chemistry. Dps acquires a ferric core of approximately 500 Fe(III) according to the mineralization equation, 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(III)OOH((core)) + 4H(+), again with a 2 Fe(II)/H(2)O(2) stoichiometry. The protein forms a similar ferric core with O(2) as the oxidant, albeit at a slower rate. In the absence of H(2)O(2) and O(2), Dps forms a ferrous core of approximately 400 Fe(II) by the reaction Fe(2+) + H(2)O + Cl(-) --> Fe(II)OHCl((core)) + H(+). The ferrous core also undergoes oxidation with a stoichiometry of 2 Fe(II)/H(2)O(2). Spin trapping experiments demonstrate that Dps greatly attenuates hydroxyl radical production during Fe(II) oxidation by H(2)O(2). These results and in vitro DNA damage assays indicate that the protective effect of Dps on DNA most likely is exerted through a dual action, the physical association with DNA and the ability to nullify the toxic combination of Fe(II) and H(2)O(2). In the latter process a hydrous ferric oxide mineral core is produced within the protein, thus avoiding oxidative damage mediated by Fenton chemistry.  相似文献   

6.
Metallothionein (MT) is a strong antioxidant, due to a large number of thiol groups in the MT molecule and MT has been found in the nucleus. To investigate whether MT can directly protect DNA from damage induced by hydroxyl radical, the effects of MTs on DNA strand scission due to incubation with ferric ion-nitrilotriacetic acid and H2O2 (Fe3+ -NTA/H2O2) were studied. The Fe3+-NTA/H2O2 resulted in a higher rate of deoxyribose degradation, compared to incubation of Fe3+/H2O2, presumably mediated by the formation of hydroxyl radicals (*OH). This degradation was inhibited by either Zn-MT or Cd-MT, but not by Zn2+ or Cd2+ at similar concentrations. The Fe3+ -NTA/H2O2 resulted in a concentration dependent of increase in DNA strand scission. Damage to the sugar-phosphodiester chain was predominant over chemical modifications of the base moieties. Incubation with either Zn-MT or Cd-MT inhibited DNA damage by approximately 50%. Preincubation of MT with EDTA and N-ethylmaleimide, to alkylate sulfhydryl groups of MT, resulted in MT that was no longer able to inhibit DNA damage. These results indicates that MT can protect DNA from hydroxyl radical attack and that the cysteine thiol groups of MT may be involved in its nuclear antioxidant properties.  相似文献   

7.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

8.
Evidence is presented for a sensitive method useful for the detection of hydroxyl free radical generation in various systems. The methodology employs high pressure liquid chromatography with electrochemical detection (LCED) for the quantification and identification of the hydroxylation products from the reaction of OH with both phenol and salicylate. A detection limit of less than 1 pmol for the hydroxylation products has been achieved with electrochemical detector responses linear over at least three orders of magnitude. Detection and quantitation of the hydroxylation products obtained and formed during OH generation from biologically meaningful systems have been demonstrated. The three systems utilized were ADP/FE(II)/H2O/, hypoxanthine/xanthine oxidase plus chelated iron, and UV photolysis of H2O2.  相似文献   

9.
He P  Hu N  Zhou G 《Biomacromolecules》2002,3(1):139-146
Layer-by-layer (PDDA/Hb)(n) films were assembled by alternate adsorption of positively charged poly(diallyldimethylammonium) (PDDA) and negatively charged hemoglobin (Hb) at pH 9.2 from their aqueous solutions on pyrolytic graphite electrodes and other substrates. The assembly process was monitored and confirmed by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). CVs of (PDDA/Hb)(n) films showed a pair of well-defined, nearly reversible peaks at about -0.34 V vs SCE at pH 7.0, characteristic of Hb heme Fe(III)/Fe(II) redox couple. Positions of Soret absorption band and infrared amide II band of Hb in (PDDA/Hb)(8) films suggest that Hb in the films keeps its secondary structure similar to its native state. The electrochemical parameters of (PDDA/Hb)(8) films were estimated by square wave voltammetry, and the thickness of the PDDA/Hb bilayer was estimated by QCM and scanning electron microscopy. Trichloroacetic acid and nitrite (NO(2)(-)) were catalytically reduced at (PDDA/Hb)(8) film electrodes. The electrochemical catalytic reactions of O(2) and H(2)O(2) on (PDDA/Hb)(8) films were also studied.  相似文献   

10.
Epidemiological studies have suggested that the use of aspirin is associated with a decreased incidence of human malignancies, particularly colorectal cancer. Since reactive oxygen species (ROS) are critically involved in multistage carcinogenesis, this study was undertaken to examine the ability of aspirin to inhibit ROS-mediated DNA damage. Hydrogen peroxide (H2O2)+Cu(II) and hydroquinone (HQ) + Cu(II) were used to cause oxidative DNA strand breaks in phiX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.5-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a marked inhibition of oxidative DNA damage induced by either H2O2/Cu(II) or HQ/Cu(II). The inhibition of oxidative DNA damage by aspirin was exhibited in a concentration-dependent manner. Moreover, aspirin was found to be much more potent than the hydroxyl radical scavengers, mannitol and dimethyl sulfoxide, in protecting against the H2O2/Cu(II)-mediated DNA strand breaks. Since the reduction of Cu(II) to Cu(I) is crucially involved in both H2O2/Cu(II)- and HQ/Cu(II)-mediated formation of hydroxyl radical or its equivalent, and the subsequent oxidative DNA damage, we examined whether aspirin could inhibit this Cu(II)/Cu(I) redox cycle. It was observed that aspirin at concentrations that showed the inhibitory effect on oxidative DNA damage did not alter the Cu(II)/Cu(I) redox cycle in either H2O2/Cu(II) or HQ/Cu(II) system. In addition, aspirin was not found to significantly scavenge H2O2. This study demonstrates for the first time that aspirin potently inhibits both H2O2/Cu(II)- and HQ/Cu(II)-mediated oxidative DNA strand breaks most likely through scavenging the hydroxyl radical or its equivalent derived from these two systems. The potent inhibition of oxidative DNA damage by aspirin may thus partially contribute to its anticancer activities observed in humans.  相似文献   

11.
Bacterioferritin (EcBFR) of Escherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the "ferroxidase center." The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H(2)O(2) as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H(2)O(2) at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H(2)O(2) corresponds to [Fe(II)(2)-P](Z) + H(2)O(2) --> [Fe(III)(2)O-P](Z) + H(2)O, where [Fe(II)(2)-P](Z) represents a diferrous ferroxidase center complex of the protein P with net charge Z and [Fe(III)(2)O-P](Z) a micro-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2FeOOH((core)) + 4H(+), where two Fe(II) are again oxidized by one H(2)O(2). Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O(2) is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H(2)O(2) produced from O(2) is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H(2)O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H(2)O(2), consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H(2)O(2), thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.  相似文献   

12.
Defined radical species generated radiolytically were allowed to attack proteins in solution. The hydroxyl radical (OH.) in the presence of O2 degraded bovine serum albumin (BSA) to specific fragments detectable by SDS/polyacrylamide-gel electrophoresis; fragmentation was not obvious when the products were analysed by h.p.l.c. In the absence of O2 the OH. cross-linked the protein with bonds stable to SDS and reducing conditions. The superoxide (O2-.) and hydroperoxyl (HO2.) radicals were virtually inactive in these respects, as were several other peroxyl radicals. Fragmentation and cross-linking could also be observed when a mixture of biosynthetically labelled cellular proteins was used as substrate. Carbonyl and amino groups were generated during the reaction of OH. with BSA in the presence of O2. Changes in fluorescence during OH. attack in the absence of O2 revealed both loss of tryptophan and changes in conformation during OH. attack in the presence of O2. Increased susceptibility to enzymic proteolysis was observed when BSA was attacked by most radical systems, with the sole exception of O2-.. The transition-metal cations Cu2+ and Fe3+, in the presence of H2O2, could also fragment BSA. The reactions were inhibited by EDTA, or by desferal and diethylenetriaminepenta-acetic acid ('DETAPAC') respectively. The increased susceptibility to enzymic hydrolysis of radical-damaged proteins may have biological significance.  相似文献   

13.
The initiation of lipid peroxidation by Fe2+ and H2O2 (Fenton's reagent) is often proposed to be mediated by the highly reactive hydroxyl radical. Using Fe2+, H2O2, and phospholipid liposomes as a model system, we have found that lipid peroxidation, as assessed by malondialdehyde formation, is not initiated by the hydroxyl radical, but rather requires Fe3+ and Fe2+. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide and the bleaching of para-nitrosodimethylaniline confirmed the generation of the hydroxyl radical in this system. Accordingly, catalase and the hydroxyl radical scavengers mannitol and benzoate efficiently inhibited the generation and the detection of hydroxyl radical. However, catalase, mannitol, and benzoate could either stimulate or inhibit lipid peroxidation. These unusual effects were found to be consistent with their ability to modulate the extent of Fe2+ oxidation by H2O2 and demonstrated that lipid peroxidation depends on the Fe3+:Fe2+ ratio, maximal initial rates occurring at 1:1. These studies suggest that the initiation of liposomal peroxidation by Fe2+ and H2O2 is mediated by an oxidant which requires both Fe3+ and Fe2+ and that the rate of the reaction is determined by the absolute Fe3+:Fe2+ ratio.  相似文献   

14.
Iron(II)/EDTA/ascorbate-mediated oxidative damage to specific amino acid residues (tryptophan) of serum albumin was studied. The active species generated by Fe(II)/EDTA/ascorbate preferred to react with tryptophan residues rather than histidine or other amino acids. The observation of preferential damage to tryptophan residues of the protein was fully suported by a model experiment using a tryptophan analogue. The reaction of Fe(II)/EDTA/ascorbate to the protein was significantly suppressed by mannitol and dimethysulfoxide, suggesting the participation of the hydroxyl radical generated via Fenton’s reaction. The result was supported by the hydroxyl radical assay using 2-deoxyribose.  相似文献   

15.
Listeria innocua Dps (DNA binding protein from starved cells) affords protection to DNA against oxidative damage and can accumulate about 500 iron atoms within its central cavity through a process facilitated by a ferroxidase center. The chemistry of iron binding and oxidation in Listeria Dps (LiDps, formerly described as a ferritin) using H(2)O(2) as oxidant was studied to further define the mechanism of iron deposition inside the protein and the role of LiDps in protecting DNA from oxidative damage. The relatively strong binding of 12 Fe(2+) to the apoprotein (K(D) approximately 0.023 microM) was demonstrated by isothermal titration calorimetry, fluorescence quenching, and pH stat experiments. Hydrogen peroxide was found to be a more efficient oxidant for the protein-bound Fe(2+) than O(2). Iron(II) oxidation by H(2)O(2) occurs with a stoichiometry of 2 Fe(2+)/H(2)O(2) in both the protein-based ferroxidation and subsequent mineralization reactions, indicating complete reduction of H(2)O(2) to H(2)O. Electron paramagnetic resonance (EPR) spin-trapping experiments demonstrated that LiDps attenuates the production of hydroxyl radical by Fenton chemistry. DNA cleavage assays showed that the protein, while not binding to DNA itself, protects it against the deleterious combination of Fe(2+) and H(2)O(2). The overall process of iron deposition and detoxification by LiDps is described by the following equations. For ferroxidation, Fe(2+) + Dps(Z)--> [(Fe(2+))-Dps](Z+1) + H(+) (Fe(2+) binding) and [(Fe(2+))-Dps](Z+1) + Fe(2+) + H(2)O(2) --> [(Fe(3+))(2)(O)(2)-Dps](Z+1) + 2H(+) (Fe(2+) oxidation/hydrolysis). For mineralization, 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH((core)) + 4H(+) (Fe(2+) oxidation/hydrolysis). These reactions occur in place of undesirable odd-electron redox processes that produce hydroxyl radical.  相似文献   

16.
The melastatin-related transient receptor potential channel TRPM2 is a Ca(2+)-permeable channel that is activated by H(2)O(2), and the Ca(2+) influx through TRPM2 mediates cell death. However, the responsible oxidants for TRPM2 activation remain to be identified. In the present study, we investigated the involvement of hydroxyl radical on TRPM2 activation in TRPM2-expressing HEK293 cells and the rat beta-cell line RIN-5F. In both cell types, H(2)O(2) induced Ca(2+) influx in a concentration-dependent manner. However, the addition of hydroxyl radical, which was produced by mixing FeSO(4) and H(2)O(2), to the cells, did not increase intracellular Ca(2+) concentration. Interestingly, when H(2)O(2) was added to the cells under intracellular Fe(2+)-accumulated conditions, Ca(2+) influx was markedly enhanced compared to H(2)O(2) alone. In addition, the H(2)O(2)-induced Ca(2+) influx was reduced by hydroxyl radical scavengers and an iron chelator. Under intracellular Fe(2+)-accumulated conditions, H(2)O(2)-induced RIN-5F cell death through TRPM2 activation was also markedly enhanced. Hydroxyl radical scavengers and an iron chelator suppressed the RIN-5F cell death by H(2)O(2). These results strongly suggest that the intracellular hydroxyl radical plays a key role in the activation of TRPM2 during H(2)O(2) treatment, and TRPM2 activation mediated by hydroxyl radical is implicated in H(2)O(2)-induced cell death in the beta-cell line RIN-5F.  相似文献   

17.
Proteolytic degradation of oxidatively damaged [3H] bovine serum albumin [( 3H]BSA) was studied during incubation with cell-free erythrocyte extracts and a wide variety (14) of purified proteases. [3H]BSA was pretreated by exposure (60Co radiation) to the hydroxyl radical (.OH), the superoxide anion radical (O2-), or the combination of .OH + O2- + oxygen. Treated (and untreated) samples were dialyzed and then incubated with erythrocyte extract or proteases for measurements of proteolytic susceptibility (release of acid-soluble counts). Both .OH and .OH + O2- + caused severalfold increases in proteolytic susceptibility (with extract and proteases), but O2- alone had no effect. Proteolytic susceptibility reached a maximum at 15 nmol of .OH/nmol of BSA and declined thereafter. In contrast, proteolytic susceptibility was still increasing at an .OH + O2-/BSA molar ratio of 100 (50% .OH + 50% O2-). Degradation in erythrocyte extracts was conducted by a novel ATP- and Ca2+-independent pathway, with maximal activity at pH 7.8. Inhibitor profiles indicate that this pathway may involve metalloproteases and serine proteases. Comparisons of proteolytic susceptibility with multiple modifications to BSA primary, secondary, and tertiary structure revealed a high correlation (r = 0.98) with denaturation/increased hydrophobicity by low concentrations of .OH. Covalent aggregation reactions (BSA cross-linking) may explain the declining proteolytic susceptibility observed at .OH/BSA molar ratios greater than 20. Protein denaturation may also have caused the increased proteolytic susceptibility induced by .OH + O2- + O2, but no simple correlation could be obtained. Results with .OH + O2- + O2 appear to have been complicated by direct BSA fragmentation reactions involving (.OH-induced) protein radicals and oxygen. These data indicate a direct and quantitative relationship between protein damage by oxygen radicals and increased proteolytic susceptibility. Oxidative denaturation may exemplify a simple, yet effective inherent mechanism for intracellular proteolysis.  相似文献   

18.
Copper-induced oxidative damage is generally attributed to the formation of the highly reactive hydroxyl radical by a mechanism analogous to the Haber-Weiss cycle for Fe(II) and H2O2. In the present work, the reaction between the Cu(I) ion and H2O2 is studied using the EPR spin-trapping technique. The hydroxyl radical adduct was observed when Cu(I), dissolved in acetonitrile under N2, was added to pH 7.4 phosphate buffer containing 100 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Formation of the hydroxyl radical was dependent on the presence of O2 and subsequent formation of H2O2. The kscav/kDMPO ratios obtained were below those expected for a mechanism involving free hydroxyl radical and reflect the interference of nucleophilic addition of H2O to DMPO to form the DMPO/.OH adduct in the presence of nonchelated copper ion. Addition of ethanol or dimethyl sulfoxide to the reaction suggests that a high-valent metal intermediate, possibly Cu(III), was also formed. Spin trapping of hydroxyl radical was almost completely inhibited upon addition of Cu(I) to a solution of either nitrilotriacetate or histidine, even though the copper was fully oxidized to Cu(II) and H2O2 was formed. Bathocuproinedisulfonate, thiourea, and reduced glutathione all stabilized the Cu(I) ion toward oxidation by O2. Upon addition of H2O2, the Cu(I) in all three complexes was oxidized to varying degrees; however, only the thiourea complex was fully oxidized within 2 min of reaction and produced detectable hydroxyl radicals. No radicals were detected from the bathocuproinedisulfonate or glutathione complexes. Overall, these results suggest that the deleterious effects of copper ions in vivo are diminished by biochemical chelators, especially glutathione, which probably has a major role in moderating the toxicological effects of copper.  相似文献   

19.
Cao D  Hu N 《Biophysical chemistry》2006,121(3):209-217
Alternate adsorption of negatively charged Fe(3)O(4) nanoparticles from their pH 8.0 aqueous dispersions and positively charged hemoglobin (Hb) from its pH 5.5 buffers on solid substrates resulted in the assembly of {Fe(3)O(4)/Hb}(n) layer-by-layer films. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the film growth. A pair of well-defined, nearly reversible CV peaks for HbFe(III)/Fe(II) redox couples was observed for {Fe(3)O(4)/Hb}(n) films on pyrolytic graphite (PG) electrodes. Although the multilayered films grew linearly with the number of Fe(3)O(4)/Hb bilayers (n) and the amount of Hb adsorbed in each bilayer was generally the same, the electroactive Hb could only extend to 6 bilayers. This indicates that only those Hb molecules in the first few bilayers closest to the electrode surface are electroactive. The electrochemical parameters such as the apparent heterogeneous electron transfer rate constant (k(s)) were estimated by square wave voltammetry (SWV) and nonlinear regression. The Soret absorption band position of Hb in {Fe(3)O(4)/Hb}(6) films showed that Hb in the films retained its near native structure in the medium pH range. The {Fe(3)O(4)/Hb}(6) film electrodes also showed good biocatalytic activity toward reduction of oxygen, hydrogen peroxide, trichloroacetic acid, and nitrite. The electrochemical reduction overpotentials of these substrates were lowered significantly by {Fe(3)O(4)/Hb}(n) films.  相似文献   

20.
A simple and sensitive electrochemical biosensor was used to detect tyrosine oxidation induced by hydroxyl radicals generated by Fenton reaction (Fe(2+)/H(2)O(2)). Poly(glu, tyr) (4:1) peptides were immobilized on indium tin oxide (ITO) electrode surface via layer-by-layer assembly technique, and Os(bpy)(3)(2+)-mediated tyrosine oxidation current was employed as the signal reporter of the biosensor. It was found that the electrochemical signal of the peptide decreased markedly after incubation with Fenton reagents. Interestingly, L-dopa, the oxidation product of tyrosine, was likely to form complexes with Fe(III), which could suppress the electro-oxidation of L-dopa and resulted in decrease of current response. Our results indicate that the peptide damage involved two steps and was a second-order reaction. X-ray photoelectron spectroscopy was used to quantitatively determine nitrogen elemental percentage on peptide-coated electrode surface, which eliminated the possibility that signal decrease was caused by peptide backbone cleavage. Moreover, the lowest concentration of Fenton reagents that could be detected was 10 μM Fe(2+) or H(2)O(2), similar to the level in vivo. We suggest that the biosensor can be used to detect protein damage induced by Fenton reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号