首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of anthrax spores in endemic regions of northern Canada   总被引:2,自引:0,他引:2  
AIMS: To determine the level of anthrax spore contamination in endemic regions of northern Canada between outbreaks. METHODS AND RESULTS: Bacterial endospores were extracted from specimens via flotation and cultured on selective PLET medium. Of 588 environmental specimens collected, 11 (1.9%) contained viable anthrax spores. CONCLUSION: High environmental concentrations of anthrax spores in northern Canada appear limited to scavenger faeces and anthrax carcass sites. Burial and cremation appear equally effective at removing anthrax spores from the immediate environment, though cremation may be improved by re-burning cremation sites containing unburned animal hair. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes an effective anthrax spore detection system. It provides the first bacteriological evidence that mammalian scavengers can disseminate anthrax spores in northern Canada, and its results may be compared with future environmental studies of untreated anthrax carcass sites to help improve government response plans.  相似文献   

2.
The author studied the course of vaccine anthrax infection in irradiated rabbits. The experiments show that infection of irradiated rabbits with a vaccine strain can give rise to a disease bacteriologically, clinically, histologically and biochemically identical with typical anthrax and that anthrax toxin can be demonstrated in the plasma of dead rabbits. The main cause of anthrax sepsis is not raised sensitivity to the toxin, but the high degree of proliferation of the microorganism in the irradiated organism. The significance of phagocytosis as a defence against vaccine anthrax infection and the significance of the capsule or of another somatic substance for the development of the anthrax syndrome are discussed.  相似文献   

3.
Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-deficient mice remained fully sensitive to both anthrax lethal and edema toxins, demonstrating that targeting of myeloid cells is not responsible for anthrax toxin-induced lethality. Surprisingly, the myeloid-specific CMG2-deficient mice were completely resistant to B. anthracis infection. Neutrophil depletion experiments suggest that B. anthracis relies on anthrax toxin secretion to evade the scavenging functions of neutrophils to successfully establish infection. This work demonstrates that anthrax toxin uptake through CMG2 and the resulting impairment of myeloid cells are essential to anthrax infection.  相似文献   

4.
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.  相似文献   

5.
The anthrax toxin complex is primarily responsible for most of the symptoms of anthrax. This complex is composed of three proteins, anthrax protective antigen, anthrax edema factor, and anthrax lethal factor. The three proteins act in binary combination of protective antigen plus edema factor (edema toxin) and protective antigen plus lethal factor (lethal toxin) that paralyze the host defenses and eventually kill the host. Both edema factor and lethal factor are intracellularly acting proteins that require protective antigen for their delivery into the host cell. In this study, we show that deletion of certain residues of protective antigen results in variants of protective antigen that inhibit the action of anthrax toxin both in vitro and in vivo. These mutants protected mice against both lethal toxin and edema toxin challenge, even when injected at a 1:8 ratio relative to the wild-type protein. Thus, these mutant proteins are promising candidates that may be used to neutralize the action of anthrax toxin.  相似文献   

6.
Bacillus anthracis is the etiological agent of anthrax. Although anthrax is primarily an epizootic disease; humans are at risk for contracting anthrax. The potential use of B. anthracis spores as biowarfare agent has led to immense attention. Prolonged vaccination schedule of current anthrax vaccine and variable protection conferred; often leading to failure of therapy. This highlights the need for alternative anthrax countermeasures. A number of approaches are being investigated to substitute or supplement the existing anthrax vaccines. These relied on expression of Protective antigen (PA), the key protective immunogen; in bacterial or plant systems; or utilization of attenuated strains of B. anthracis for immunization. Few studies have established potential of domain IV of PA for immunization. Other targets including the spore, capsule, S-layer and anthrax toxin components have been investigated for imparting protective immunity. It has been shown that co-immunization of PA with domain I of lethal factor that binds PA resulted in higher antibody responses. Of the epitope based vaccines, the loop neutralizing determinant, in particular; elicited robust neutralizing antibody response and conferred 97% protection upon challenge. DNA vaccination resulted in varying degree of protection and seems a promising approach. Additionally, the applicability of monoclonal and therapeutic antibodies in the treatment of anthrax has also been demonstrated. The recent progress in the direction of anthrax prophylaxis has been evaluated in this review.  相似文献   

7.
We report the synthesis of biodegradable polyvalent inhibitors of anthrax toxin based on poly-L-glutamic acid (PLGA). These biocompatible polyvalent inhibitors are at least 4 orders of magnitude more potent than the corresponding monovalent peptides in vitro and are comparable in potency to polyacrylamide-based inhibitors of anthrax toxin assembly. We have elucidated the influence of peptide density on inhibitory potency and demonstrated that these inhibitory potencies are limited by kinetics, with even higher activities seen when the inhibitors are preincubated with the heptameric receptor-binding subunit of anthrax toxin prior to exposure to cells. These polyvalent inhibitors are also effective at neutralizing anthrax toxin in vivo and represent attractive leads for designing biocompatible anthrax therapeutics.  相似文献   

8.
Inhalation anthrax is often described as a toxin‐mediated disease. However, the toxaemia model does not account for the high mortality of inhalation anthrax relative to other forms of the disease or for the pathology present in inhalation anthrax. Patients with inhalation anthrax consistently show extreme bacteraemia and, in contrast to animals challenged with toxin, signs of sepsis. Rather than toxaemia, we propose that death in inhalation anthrax results from an overwhelming bacteraemia that leads to severe sepsis. According to our model, the central role of anthrax toxin is to permit the vegetative bacteria to escape immune detection. Other forms of B. anthracis infection have lower mortality because their overt symptoms early in the course of disease cause patients to seek medical care at a time when the infection and its sequelae can still be reversed by antibiotics. Thus, the sepsis model explains key features of inhalation anthrax and may offer a more complete understanding of disease pathology for researchers as well as those involved in the care of patients.  相似文献   

9.
Interactions between anthrax toxin receptors and protective antigen   总被引:8,自引:0,他引:8  
Since the anthrax mail attacks of 2001, much has been learned about the interactions between anthrax toxin and its receptors. Two distinct cellular receptors for anthrax toxin have been identified and are designated capillary morphogenesis protein 2 (CMG2) and anthrax toxin receptor/tumor endothelial marker 8 (ATR/TEM8). The molecular details of the toxin-receptor interactions have been revealed through crystallographic, biochemical and genetic studies. In addition, a novel pathway by which anthrax toxin enters cells is starting to be uncovered.  相似文献   

10.
Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass or anthrax contaminated blood, and the presence of anthrax spores in their spots (faeces and vomitus) was microbiologically monitored. It was also evaluated if the anthrax spores were able to germinate and replicate in the gut content of insects. These results confirmed the role of insects in spreading anthrax infection. This role, although not major, given the huge size of fly populations often associated with anthrax epidemics in domestic animals, cannot be neglected from an epidemiological point of view and suggest that fly control should be considered as part of anthrax control programs.  相似文献   

11.
目的:研究炭疽致死毒素在巨噬细胞中引起细胞自噬现象以及细胞自噬对炭疽致死毒素毒性的影响。方法:采用电子显微镜观察、单丹磺酰尸胺(MDC)荧光染色、Western印迹检测研究炭疽致死毒素作用后的巨噬细胞;采用MTT法检测细胞自噬对炭疽致死毒素毒性的影响。结果:采用以上3种方法,在巨噬细胞J774A.1中均可检测到细胞自噬现象;通过诱导或抑制细胞自噬,分别提高或降低了炭疽致死毒素的半数致死浓度。结论:炭疽致死毒素在巨噬细胞内能引起细胞自噬现象;细胞自噬能减弱炭疽致死毒素对巨噬细胞的毒性。  相似文献   

12.
Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.  相似文献   

13.
Anthrax, caused by the spore-forming bacterium Bacillus anthracis, is a zoonosis affecting animals and humans globally. In the United States, anthrax outbreaks occur in wildlife and livestock, with frequent outbreaks in native and exotic wildlife species in Texas, livestock outbreaks in the Dakotas, and sporadic mixed outbreaks in Montana. Understanding where pathogen and host habitat selection overlap is essential for anthrax management. Resource selection and habitat use of ungulates may be sex-specific and lead to differential anthrax exposure risks across the landscape for males and females. We evaluated female elk (Cervus canadensis) resource selection in the same study areas as male elk in a previous anthrax risk study to identify risk of anthrax transmission to females and compare transmission risk between females and males. We developed a generalized linear mixed-effect model to estimate resource selection for female elk in southwest Montana during the June to August anthrax transmission risk period. We then predicted habitat selection of female and male elk across the study area and compared selection with the distribution of anthrax risk to identify spatial distributions of potential anthrax exposure for the male and female elk. Female and male elk selected different resources during the anthrax risk period, which resulted in different anthrax exposure areas for females and males. The sex-specific resource selection and habitat use could infer different areas of risk for anthrax transmission, which can improve anthrax and wildlife management and have important public health and economic implications. © 2020 The Wildlife Society.  相似文献   

14.
基于CiteSpace的全球炭疽研究演化及其热点可视化分析   总被引:1,自引:0,他引:1  
陈静飞  王怀璋  梁婷 《微生物学报》2020,60(10):2161-2171
最新研究估算全球约有18.3亿人生活在炭疽风险区域内。经过几十年的发展,全球炭疽研究成果数量丰硕且总量在增长。【目的】对全球炭疽研究文献进行探析,以获取其研究领域演化趋势及热点变化。【方法】基于WOS来源文献,运用科学计量方法,对1998–2018年全球炭疽研究进行可视化分析,综合运用CiteSpace可视化分析软件中文献共被引、文献突现、关键词共现等工具,探析全球炭疽研究领域演化趋势及其热点变化。【结果】全球炭疽研究可分为1998–2004年"多维暴发"、2005–2013年"持续探索"和2014–2018年"新兴热点"3个研究阶段。【结论】炭疽快速实时痕量检测和新型炭疽疫苗有可能成为未来全球炭疽研究热点。  相似文献   

15.
Recently, we demonstrated that simultaneous blocking of bacterial growth by antibiotics and inhibition of anthrax toxin action with antibodies against protective antigen were beneficial for the treatment of anthrax. The present study examined the hypothesis that blocking the pore formed by protective antigen can inhibit the action of anthrax toxin. The potential inhibitors were chosen by a structure-based design using beta-cyclodextrin as the starting molecule. Several beta-cyclodextrin derivatives were evaluated for their ability to protect RAW 264.7 cells from the action of anthrax lethal toxin. Per-substituted aminoalkyl derivatives displayed inhibitory activity and were protective against anthrax lethal toxin action at low micromolar concentrations. These results provide the basis for a structure-based drug discovery program, with the goal of identifying new drug candidates for anthrax treatment.  相似文献   

16.
In experiments on inbred mice infected with B. anthracis capsular strain 71/12 of Tsenkovsky's second vaccine B. anthracis lethal toxin introduced in mixture with spores has been shown to aggravate anthrax infection in CBA mice susceptible to anthrax, while producing a faint effect on the infectious process in BALB mice with hereditary resistance to anthrax. B. anthracis purified edema toxin has been found to produce a weaker aggravating effect with respect to anthrax infection than the lethal toxin. As revealed in these experiments, the capacity of the lethal toxin to suppress the activity of peritoneal macrophages in vitro is the more pronounced, the more resistant to anthrax are the mice used as the donors of these macrophages. The mechanism of hereditary immunity which may ensure resistance to infection in the presence of immunosuppression is discussed.  相似文献   

17.
目的:构建炭疽受体CMG2和人IgGl Fc片段融合基因载体,转染CHO细胞并通过毒素中和试验检测CMG2-Fc拮抗炭疽毒素(PA+LF)的能力。方法-将含有CMG2胞外区1-217AA片度基因和人IgGl的Fc片段基因共同连接入pcDNA3.1载体转染CHO细胞并筛选高表达CMG2-Fc的CHO细胞系,通过小鼠RAW264.7巨噬细胞保护试验检测CMG2-Fc拮抗炭疽毒素的能力。结果:获得了表达CMG2-Fc的细胞株,毒素中和实验显示该蛋白可以有效抑制炭疽毒素引起的细胞损伤。结论:CMG2-Fc能够保护小鼠巨噬细胞免受炭疽毒素攻击,提示其可以作为抗毒素治疗炭疽感染。  相似文献   

18.
Initiation of inhalation anthrax is believed to involve phagocytosis of Bacillus anthracis spores by alveolar macrophages, followed by spore germination within the phagolysosome. In order to establish a systemic infection, it is predicted that bacilli then escape from the macrophage and replicate extracellularly. Mechanisms utilized by B. anthracis to escape from the macrophage are not well characterized, but a role for anthrax toxin has been proposed. Here we report the isolation of an anthrax toxin-resistant cell line (R3D) following chemical mutagenesis of toxin-sensitive RAW 264.7 murine macrophage cells. Both R3D and RAW 264.7 cells phagocytize spores of a B. anthracis Sterne strain. However, RAW 264.7 cells are killed following spore challenge, whereas R3D cells survive. Resistance to toxin and spore challenge correlates with loss of expression of anthrax toxin receptor 2 (ANTXR2/CMG-2). When R3D cells are complemented with cDNA encoding either murine ANTXR2 or human anthrax toxin receptor 1 (ANTXR1/TEM-8), toxin and spore challenge susceptibility are restored, indicating that over-expression of either ANTXR can confer susceptibility to anthrax spore challenge. Taken together, these results indicate that anthrax toxin expression by the germinated spore enables B. anthracis killing of the macrophage from within.  相似文献   

19.
Anthrax lethal toxin (LT) is a critical virulence factor that cleaves and inactivates MAPK kinases (MAPKKs) in host cells and has been proposed as a therapeutic target in the treatment of human anthrax infections. Despite the potential use of anti-toxin agents in humans, the standard activity assays for anthrax LT are currently based on cytotoxic actions of anthrax LT that are cell-, strain-, and species-specific, which have not been demonstrated to occur in human cells. We now report that T cell proliferation and IL-2 production inversely correlate with anthrax LT levels in human cell assays. The model CD4+ T cell tumor line, Jurkat, is a susceptible target for the specific protease action of anthrax LT. Anthrax LT cleaves and inactivates MAPKKs in Jurkat cells, whereas not affecting proximal or parallel TCR signal transduction pathways. Moreover, anthrax LT specifically inhibits PMA/ionomycin- and anti-CD3-induced IL-2 production in Jurkat cells. An inhibitor of the protease activity of anthrax LT completely restores IL-2 production by anthrax LT-treated Jurkat cells. Anthrax LT acts on primary CD4+ T cells as well, cleaving MAPKKs and leading to a 95% reduction in anti-CD3-induced proliferation and IL-2 production. These findings not only will be useful in the development of new human cell-based bioassays for the activity of anthrax LT, but they also suggest new mechanisms that facilitate immune evasion by Bacillus anthracis. Specifically, anthrax LT inhibits IL-2 production and proliferative responses in CD4+ T cells, thereby blocking functions that are pivotal in the regulation of immune responses.  相似文献   

20.
Protective host immune responses to anthrax infection in humans and animal models are characterized by the development of neutralizing Abs against the receptor-binding anthrax protective Ag (PA), which, together with the lethal factor (LF) protease, composes anthrax lethal toxin (LT). We now report that B cells, in turn, are targets for LT. Anthrax PA directly binds primary B cells, resulting in the LF-dependent cleavage of the MAPK kinases (MAPKKs) and disrupted signaling to downstream MAPK targets. Although not directly lethal to B cells, anthrax LT treatment causes severe B cell dysfunction, greatly reducing proliferative responses to IL-4-, anti-IgM-, and/or anti-CD40 stimulation. Moreover, B cells treated with anthrax LT in vitro or isolated from mice treated with anthrax LT in vivo have a markedly diminished capacity to proliferate and produce IgM in response to TLR-2 and TLR-4 ligands. The suppressive effects of anthrax LT on B cell function occur at picomolar concentrations in vitro and at sublethal doses in vivo. These results indicate that anthrax LT directly inhibits the function of B cells in vitro and in vivo, revealing a potential mechanism through which the pathogen could bypass protective immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号