首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Successful cell duplication requires orderly progression through a succession of dramatic cell-cycle events. Disruption of this precise coupling can compromise genomic integrity. The coordination of cell-cycle events is thought to arise from control by a single master regulator, cyclin:Cdk, whose activity oscillates. However, we still know very little of how individual cell-cycle events are coupled to this oscillator and how the timing of each event is controlled. RESULTS: We developed an approach with RNA interference (RNAi) and real-time imaging to study cyclin contributions to the rapid syncytial divisions of Drosophila embryos. Simultaneous knockdown of all three mitotic cyclins blocked nuclei from entering mitosis. Despite nuclear arrest, centrosomes and associated myosin cages continued to divide until the midblastula transition. Centrosome division was synchronous throughout the embryo and the period of the uncoupled duplication cycle increased over successive divisions. In contrast to its normal actions, injection of a competitive inhibitor of the anaphase-promoting complex/cyclosome (APC/C) after knockdown of the mitotic cyclins did not interfere with the centrosome-duplication cycles. Finally, we examined how cyclin knockdown affects the onset of cellularization at the midblastula transition and found that nuclear cell-cycle arrest did not advance or delay onset of cellularization. CONCLUSIONS: We show that knockdown of mitotic cyclins allows centrosomes to duplicate in a cycle that is uncoupled from other cell-cycle events. We suggest that high mitotic cyclin normally ensures that the centrosome cycle remains entrained to the nuclear cycle.  相似文献   

2.
The unique cell cycles that characterize various aspects of the differentiation of germ cells provide a unique opportunity to understand heretofore elusive aspects of the in vivo function of cell cycle regulators. Key components of the cell cycle machinery are the regulatory sub-units, the cyclins, and their catalytic partners, the cyclin-dependent kinases. Some of the cyclins exhibit unique patterns of expression of germ cells that suggest possible concomitant distinct functions, predictions that are being explored by targeted mutagenesis in mouse models. A novel, meiosis-specific function has been shown for one of the A-type cyclins, cyclin A1. Embryonic lethality has obviated understanding of the germline functions of cyclin A2 and cyclin B1, while yet other cyclins, although expressed at specific stages of germ cell development, may have less essential function in the male germline.  相似文献   

3.
A number of cyclins have been described, most of which act together with their catalytic partners, the cyclin-dependent kinases (Cdks), to regulate events in the eukaryotic cell cycle. Cyclin C was originally identified by a genetic screen for human and Drosophila cDNAs that complement a triple knock-out of the CLN genes in Saccharomyces cerevisiae. Unlike other cyclins identified in this complementation screen, there has been no evidence that cyclin C has a cell-cycle role in the cognate organism. Here we report that cyclin C is a nuclear protein present in a multiprotein complex. It interacts both in vitro and in vivo with Cdk8, a novel protein-kinase of the Cdk family, structurally related to the yeast Srb10 kinase. We also show that Cdk8 can interact in vivo with the large subunit of RNA polymerase II and that a kinase activity that phosphorylates the RNA polymerase II large subunit is present in Cdk8 immunoprecipitates. Based on these observations and sequence similarity to the kinase/cyclin pair Srb10/Srb11 in S. cerevisiae, we suggest that cyclin C and Cdk8 control RNA polymerase II function.  相似文献   

4.
Cell-cycle transitions in higher eukaryotes are regulated by different cyclin-dependent kinases (CDKs) and their activating cyclin subunits. Based on pioneering findings that a dominant-negative mutation of CDK1 blocks the cell cycle at G2-M phase, whereas dominant-negative CDK2 inhibits the transition into S phase, a model of cell-cycle control has emerged in which each transition is regulated by a specific subset of CDKs and cyclins. Recent work with gene-targeted mice has led to a revision of this model. We discuss cell-cycle control in light of overlapping and essential functions of the different CDKs and cyclins.  相似文献   

5.
Mouse development and cell proliferation in the absence of D-cyclins   总被引:41,自引:0,他引:41  
D-type cyclins (cyclins D1, D2, and D3) are regarded as essential links between cell environment and the core cell cycle machinery. We tested the requirement for D-cyclins in mouse development and in proliferation by generating mice lacking all D-cyclins. We found that these cyclin D1(-/-)D2(-/-)D3(-/-) mice develop until mid/late gestation and die due to heart abnormalities combined with a severe anemia. Our analyses revealed that the D-cyclins are critically required for the expansion of hematopoietic stem cells. In contrast, cyclin D-deficient fibroblasts proliferate nearly normally but show increased requirement for mitogenic stimulation in cell cycle re-entry. We found that the proliferation of cyclin D1(-/-)D2(-/-)D3(-/-) cells is resistant to the inhibition by p16(INK4a), but it critically depends on CDK2. Lastly, we found that cells lacking D-cyclins display reduced susceptibility to the oncogenic transformation. Our results reveal the presence of alternative mechanisms that allow cell cycle progression in a cyclin D-independent fashion.  相似文献   

6.
The isolation of plant genes homologous to cdk and cyclin components from yeast and animals proves the existence of a basic cell cycle machinery in all eukaryotes. cdk and cyclin expression has been shown to be involved in the spatial and temporal control of cell division in a variety of developmental processes. In plants, cell division and development are closely interlinked processes that are regulated by phytohormones. cdks and cyclins were found to be under control of phytohormones underscoring their integral role in mediating different developmental pathways. Furthermore, studies on cdk and cyclin expression not only correlate with actual cell cycle activity but also with cell division competence providing a working model to understand regeneration capacity at the molecular level.  相似文献   

7.
In eukaryotes, mitotic cyclins localize differently in the cell and regulate different aspects of the cell cycle. We investigated the relationship between subcellular localization of cyclins A and B and their functions in syncytial preblastoderm Drosophila embryos. During early embryonic cycles, cyclin A was always concentrated in the nucleus and present at a low level in the cytoplasm. Cyclin B was predominantly cytoplasmic, and localized within nuclei only during late prophase. Also, cyclin B colocalized with metaphase but not anaphase spindle microtubules. We changed maternal gene doses of cyclins A and B to test their functions in preblastoderm embryos. We observed that increasing doses of cyclin B increased cyclin B-Cdk1 activity, which correlated with shorter microtubules and slower microtubule-dependent nuclear movements. This provides in vivo evidence that cyclin B-Cdk1 regulates microtubule dynamics. In addition, the overall duration of the early nuclear cycles was affected by cyclin A but not cyclin B levels. Taken together, our observations support the hypothesis that cyclin B regulates cytoskeletal changes while cyclin A regulates the nuclear cycles. Varying the relative levels of cyclins A and B uncoupled the cytoskeletal and nuclear events, so we speculate that a balance of cyclins is necessary for proper coordination during these embryonic cycles.  相似文献   

8.
Cell cycle progression is tightly regulated by cyclins, cyclin-dependent kinases (cdks) and related inhibitory phophatases. Here, we employed mitotic selection to synchronize the C6 glioma cell cycle at the start of the G1 phase and mapped the temporal regulation of selected cyclins, cdks and inhibitory proteins throughout the 12 h of G1 by immunoblot analysis. The D-type cyclins, D3 and D1, were differentially expressed during the C6 glioma G1 phase. Cyclin D1 was up-regulated in the mid-G1 phase (4-6 h) while cyclin D3 expression emerged only in late G1 (9-12 h). The influence of the anticonvulsant agent valproic acid (VPA) on expression of cyclins and related proteins was determined, since its teratogenic potency has been linked to cell cycle arrest in the mid-G1 phase. Exposure of C6 glioma to VPA induced a marked up-regulation of cyclin D3 and decreased expression of the proliferating cell nuclear antigen. In synchronized cell populations, increased expression of cyclin D3 by VPA was detected in the mid-G1 phase (3-5 h). Immunocytochemical localization demonstrated rapid intracellular translocation of cyclin D3 to the nucleus following VPA exposure, suggesting that VPA-induced cell cycle arrest may be mediated by precocious activation of cyclin D3 in the G1 phase.  相似文献   

9.
The cell cycle machinery consists of regulatory proteins that control the progression through the cell cycle ensuring that DNA replication alternates with DNA segregation in mitosis to maintain cell integrity. Some of these key regulators have to be degraded at each cell cycle to prevent cellular dysfunction. Mitotic exit requires the inactivation of cyclin dependent kinase1 (cdk1) and it is the degradation of the cyclin subunit that inactivates the kinase. Cyclin degradation has been well characterized and it was shown that it is ubiquitin proteasome pathway that leads to the elimination of cyclins. By now, many other regulatory proteins were shown to be degraded by the same pathway, among them members of the aurora kinase family, degraded many other regulatory proteins. Aurora kinases are involved in mitotic spindle formation as well as in cytokinesis. The abundance and activity of the kinase is precisely regulated during the cell cycle. To understand how proteolysis regulates transitions through the cell cycle we describe two assays for ubiquitination and degradation of xenopus aurora kinase A using extracts from xenopus eggs or somatic cell lines. Published: November 11, 2002  相似文献   

10.
We have previously described the isolation of a replication competent (RC) complex from calf thymus, containing DNA polymerase alpha, DNA polymerase delta and replication factor C. Here, we describe the isolation of the RC complex from nuclear extracts of synchronized HeLa cells, which contains DNA replication proteins associated with cell-cycle regulation factors like cyclin A, cyclin B1, Cdk2 and Cdk1. In addition, it contains a kinase activity and DNA polymerase activities able to switch from a distributive to a processive mode of DNA synthesis, which is dependent on proliferating cell nuclear antigen. In vivo cross-linking of proteins to DNA in synchronized HeLa cells demonstrates the association of this complex to chromatin. We show a dynamic association of cyclins/Cdks with the RC complex during the cell cycle. Indeed, cyclin A and Cdk2 associated with the complex in S phase, and cyclin B1 and Cdk1 were present exclusively in G(2)/M phase, suggesting that the activity, as well the localization, of the RC complex might be regulated by specific cyclin/Cdk complexes.  相似文献   

11.
Cell cycle machinery and stroke   总被引:2,自引:0,他引:2  
Stroke results from a transient or permanent reduction in blood flow to the brain. The mechanisms involving neuronal death following ischemic insult are complex and not fully understood. One signal which may control ischemic neuronal death is the inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs). In dividing cells, activation of cell cycle machinery induces cell proliferation. In the context of terminally differentiated-neurons, however, aberrant activation of these elements triggers neuronal death. Indeed, there are several lines of correlative and functional evidence supporting this "cell cycle/neuronal death hypothesis". The objective of this review is to summarize the findings implicating cell cycle machinery in ischemic neuronal death from in vitro and in vivo studies. Importantly, determining and blocking the signaling pathway(s) by which these molecules act to mediate ischemic neuronal death, in conjunction with other targets may provide a viable therapeutic strategy for stroke damage.  相似文献   

12.
Recycling the cell cycle: cyclins revisited   总被引:43,自引:0,他引:43  
Murray AW 《Cell》2004,116(2):221-234
I discuss advances in the cell cycle in the 21 years since cyclin was discovered. The surprising redundancy amongst the classical cyclins (A, B, and E) and cyclin-dependent kinases (Cdk1 and Cdk2) show that the important differences between these proteins are when and where they are expressed rather than the proteins they phosphorylate. Although the broad principles of the cell cycle oscillator are widely accepted, we are surprisingly ignorant of its detailed mechanism. This is especially true of the anaphase promoting complex (APC), the machine that triggers chromosome segregation and the exit of mitosis by targeting securin and mitotic cyclins for destruction. I discuss how a cyclin/Cdk-based engine could have evolved to assume control of the cell cycle from other, older protein kinases.  相似文献   

13.
The elegant choreography of metazoan development demands exquisite regulation of cell-division timing, orientation, and asymmetry. In this review, we discuss studies in Drosophila and C. elegans that reveal how the cell cycle machinery, comprised of cyclin-dependent kinase (CDK) and cyclins functions as a master regulator of development. We provide examples of how CDK/cyclins: (1) regulate the asymmetric localization and timely destruction of cell fate determinants; (2) couple signaling to the control of cell division orientation; and (3) maintain mitotic zones for stem cell proliferation. These studies illustrate how the core cell cycle machinery should be viewed not merely as an engine that drives the cell cycle forward, but rather as a dynamic regulator that integrates the cell-division cycle with cellular differentiation, ensuring the coherent and faithful execution of developmental programs.  相似文献   

14.
Meiosis is a highly specialized cell division that requires significant reorganization of the canonical cell-cycle machinery and the use of meiosis-specific cell-cycle regulators. The anaphase-promoting complex (APC) and a conserved APC adaptor, Cdc20 (also known as Fzy), are required for anaphase progression in mitotic cells. The APC has also been implicated in meiosis, although it is not yet understood how it mediates these non-canonical divisions. Cortex (Cort) is a diverged Fzy homologue that is expressed in the female germline of Drosophila, where it functions with the Cdk1-interacting protein Cks30A to drive anaphase in meiosis II. Here, we show that Cort functions together with the canonical mitotic APC adaptor Fzy to target the three mitotic cyclins (A, B and B3) for destruction in the egg and drive anaphase progression in both meiotic divisions. In addition to controlling cyclin destruction globally in the egg, Cort and Fzy appear to both be required for the local destruction of cyclin B on spindles. We find that cyclin B associates with spindle microtubules throughout meiosis I and meiosis II, and dissociates from the meiotic spindle in anaphase II. Fzy and Cort are required for this loss of cyclin B from the meiotic spindle. Our results lead to a model in which the germline-specific APC(Cort) cooperates with the more general APC(Fzy), both locally on the meiotic spindle and globally in the egg cytoplasm, to target cyclins for destruction and drive progression through the two meiotic divisions.  相似文献   

15.
The proliferation of neutrophil granulocyte lineage is driven largely by granulocyte colony-stimulating factor (G-CSF) acting via the G-CSF receptors. In this study, we show that mice lacking cyclin D3, a component of the core cell cycle machinery, are refractory to stimulation by the G-CSF. Consequently, cyclin D3-null mice display deficient maturation of granulocytes in the bone marrow and have reduced levels of neutrophil granulocytes in their peripheral blood. The mutant mice are unable to mount a normal response to bacterial challenge and succumb to microbial infections. In contrast, the expansion of hematopoietic stem cells and lineage-committed myeloid progenitors proceeds relatively normally in mice lacking cyclin D3, revealing that the requirement for cyclin D3 function operates at later stages of neutrophil development. Importantly, we verified that this requirement is specific to cyclin D3, as mice lacking other G(1) cyclins (D1, D2, E1, or E2) display normal granulocyte counts. Our analyses revealed that in the bone marrow cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3. Collectively, these results demonstrate that cyclin D3 is an essential cell cycle recipient of G-CSF signaling, and they provide a molecular link of how G-CSF-dependent signaling triggers cell proliferation.  相似文献   

16.
17.
18.
Cancer prevention is a global priority, but history indicates that the journey towards achieving the goal is difficult. Various cyclin dependent kinase complexes (CDKs/cyclins) operate as major cell signaling components in all stages of cell cycle. CDK/cyclin protein complexes, regulating the cell cycle, are conserved during evolution. In cancer cells, cell division is uncontrolled and CDKs/cyclins become ‘check-points’ or targets. Keeping this in view the proteins cyclin C, cyclin D2, CDKN1C, and Growth Arrest and DNA Damage (GADD45α) which play a major role in regulating CDK/cyclin complexes and operate in the initial stages of cell cycle (G0 phase–S phase), have been identified as promising targets. Targeting critical regulators of cell-cycle signaling components by applying modern computational techniques is projected to be a potential tool for future cancer research.  相似文献   

19.
Mitotic cyclins are abruptly degraded at the end of mitosis by a cell-cycle-regulated ubiquitin-dependent proteolytic system. To understand how cyclin is recognized for ubiquitin conjugation, we have performed a mutagenic analysis of the destruction signal of mitotic cyclins. We demonstrate that an N-terminal cyclin B segment as short as 27 residues, containing the 9-amino-acid destruction box, is sufficient to destabilize a heterologous protein in mitotic Xenopus extracts. Each of the three highly conserved residues of the cyclin B destruction box is essential for ubiquitination and subsequent degradation. Although an intact destruction box is essential for the degradation of both A- and B-type cyclins, we find that the Xenopus cyclin A1 destruction box cannot functionally substitute for its B-type counterpart, because it does not contain the highly conserved asparagine necessary for cyclin B proteolysis. Physical analysis of ubiquitinated cyclin B intermediates demonstrates that multiple lysine residues function as ubiquitin acceptor sites, and mutagenic studies indicate that no single lysine residue is essential for cyclin B degradation. This study defines the key residues of the destruction box that target cyclin for ubiquitination and suggests there are important differences in the way in which A- and B-type cyclins are recognized by the cyclin ubiquitination machinery.  相似文献   

20.
Cyclin E ablation in the mouse   总被引:39,自引:0,他引:39  
E type cyclins (E1 and E2) are believed to drive cell entry into the S phase. It is widely assumed that the two E type cyclins are critically required for proliferation of all cell types. Here, we demonstrate that E type cyclins are largely dispensable for mouse development. However, endoreplication of trophoblast giant cells and megakaryocytes is severely impaired in the absence of cyclin E. Cyclin E-deficient cells proliferate actively under conditions of continuous cell cycling but are unable to reenter the cell cycle from the quiescent G(0) state. Molecular analyses revealed that cells lacking cyclin E fail to normally incorporate MCM proteins into DNA replication origins during G(0)-->S progression. We also found that cyclin E-deficient cells are relatively resistant to oncogenic transformation. These findings define a molecular function for E type cyclins in cell cycle reentry and reveal a differential requirement for cyclin E in normal versus oncogenic proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号