首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The growth factor erythropoietin (Epo) has shown neuronal protective action in addition to its well known proerythroid activity. Furthermore, Epo has dealt with cellular inflammation by inhibiting the expression of several proinflammatory cytokines, such as IL-1 and TNF-α. The action of TNF can have both apoptotic and antiapoptotic consequences due to altered balance between different cell signalling pathways. This work has focused on the apoptotic effects of this cytokine and the potential protective action of Epo. The model we used was neuroblastoma SH-SY5Y cells cultured in the presence of 25 ng/ml TNF-α or pretreated with 25 U/ml Epo for 12 h before the addition of TNF-α. Apoptosis was evaluated by differential cell count after Hoechst staining, analysis of DNA ladder pattern, and measurement of caspase activity. Despite its ability to induce NF-κB nuclear translocation, TNF-α induced cell death, which was found to be associated to upregulation of TNF Receptor 1 expression. On the other hand, cells activated by Epo became resistant to cell death. Prevention of death receptor upregulation and caspase activation may explain this antiapoptotic effect of Epo, which may be also favoured by the induction of a higher expression of protective factors, such as Bcl-2 and NF-κB, through mechanisms involving Jak/STAT and PI3K signalling pathways.  相似文献   

2.
《Autophagy》2013,9(12):1996-2008
How cellular metabolic activities regulate autophagy and determine the susceptibility to oxidative stress and ultimately cell death in neuronal cells is not well understood. An important example of oxidative stress is 4-hydroxynonenal (HNE), which is a lipid peroxidation product that is formed during oxidative stress, and accumulates in neurodegenerative diseases causing damage. The accumulation of toxic oxidation products such as HNE, is a prevalent feature of neurodegenerative diseases, and can promote organelle and protein damage leading to induction of autophagy. In this study, we used differentiated SH-SY5Y neuroblastoma cells to investigate the mechanisms and regulation of cellular susceptibility to HNE toxicity and the relationship to cellular metabolism. We found that autophagy is immediately stimulated by HNE at a sublethal concentration. Within the same time frame, HNE induces concentration dependent CASP3/caspase 3 activation and cell death. Interestingly, both basal and HNE-activated autophagy, were regulated by glucose metabolism. Inhibition of glucose metabolism by 2-deoxyglucose (2DG), at a concentration that inhibited autophagic flux, further exacerbated CASP3 activation and cell death in response to HNE. Cell death was attenuated by the pan-caspase inhibitor Z-VAD-FMK. Specific inhibition of glycolysis using koningic acid, a GAPDH inhibitor, inhibited autophagic flux and exacerbated HNE-induced cell death similarly to 2DG. The effects of 2DG on autophagy and HNE-induced cell death could not be reversed by addition of mannose, suggesting an ER stress-independent mechanism. 2DG decreased LAMP1 and increased BCL2 levels suggesting that its effects on autophagy may be mediated by more than one mechanism. Furthermore, 2DG decreased cellular ATP, and 2DG and HNE combined treatment decreased mitochondrial membrane potential. We conclude that glucose-dependent autophagy serves as a protective mechanism in response to HNE.  相似文献   

3.
4.
A novel series of coumarin derivatives were designed, synthesized and investigated for inhibition of cholinesterase, including acetyl cholinesterase (AChE) and butyrylcholinesterase (BuChE). This biological study showed that these compounds containing piperazine ring had significant inhibition activities on AChE rather than BuChE. Further study suggested that 9x, as one of this kind of structure derivative, showed the strongest inhibition activity on AChE with an IC50 value of 34 nM. Moreover, molecular docking, flow cytometry (FCM), and western blot assay suggested that 9x could induce cytoprotective autophagy to attenuate H2O2-induced cell death in human neuroblastoma SH-SY5Y cells. These findings highlight a new approach for the development of a novel potential neuroprotective compound targeting AChE with autophagy-inducing activity in future Alzheimer’s disease (AD) therapy.  相似文献   

5.
目的:构建Beclin-1基因短发夹干扰RNA(shRNA)慢病毒载体,感染人SH-SY5Y细胞,观察沉默Beclin-1基因后低氧对SH-SY5Y细胞自噬的影响。方法:构建特异性靶向Beclin-1基因的shRNA慢病毒表达载体和阴性对照序列慢病毒载体;再将载体转染入SH-SY5Y细胞;RT-PCR检测Beclin-1的mRNA表达;Western blot检测Beclin-1蛋白表达;CCK-8法测定Beclin-1 shRNA对SH-SY5Y细胞活力的影响。再将空白对照、阴性对照、转染型三种细胞分别以21%常氧及5%低氧培养,Western blot检测各组细胞LC3蛋白表达;电镜观察自噬小体。结果:Beclin-1 shRNA能明显抑制SH-SY5Y细胞Beclin-1的mRNA及蛋白的表达;沉默Beclin-1基因后,Beclin-1 shRNA组细胞存活率与阴性对照组相比无差异;成功建立了稳定表达Beclin-1 shRNA的SH-SY5Y细胞。5%低氧处理后,与阴性对照组相比较,Beclin-1 shRNA组细胞中LC3Ⅱ/LC3Ⅰ比值下调,细胞内自噬小体数量减少。结论:慢病毒介导的Beclin-1shRNA对SH-SY5Y细胞的活力无影响,但可以抑制低氧诱导的自噬。  相似文献   

6.
Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells   总被引:6,自引:0,他引:6  
The degeneration of nigral dopamine neurons in Parkinson's disease (PD) reportedly involves a defect in brain mitochondrial complex I in association with the activation of nuclear factor-kappaB (NF-kappaB) and caspase-3. To elucidate molecular mechanisms possibly linking these events, as well as to evaluate the neuroprotective potential of the cyclopentenone prostaglandin A1 (PGA1), an inducer of heat shock proteins (HSPs), we exposed human dopaminergic SH-SY5Y cells to the complex I inhibitor rotenone. Dose-dependent apoptosis was preceded by the nuclear translocation of NF-kappaB and then the activation of caspase-3 over the ensuing 24 h. PGA1 increased the expression of HSP70 and HSP27 and protected against rotenone-induced apoptosis, without increasing necrotic death. PGA1 blocked the rotenone-induced nuclear translocation of NF-kappaB and attenuated, but did not abolish, the caspase-3 elevation. Unexpectedly, the caspase-3 inhibitor, Ac-DEVD.CHO (DEVD), at a concentration that completely prevented the caspase-3 elevation produced by rotenone, failed to protect against apoptosis. These results suggest that complex I deficiency in dopamine cells can induce apoptosis by a process involving early NF-kappaB nuclear translocation and caspase-3 activation. PGA1 appears to protect against rotenone-induced cell death by inducing HSPs and blocking nuclear translocation of NF-kappaB in a process that attenuates caspase-3 activation, but is not mediated by its inhibition.  相似文献   

7.
Human TAO kinase 1 induces apoptosis in SH-SY5Y cells   总被引:1,自引:0,他引:1  
The human TAO kinase 1 (hTAOK1) is a member of the Ste20 group of kinases with the kinase domain located at the N-terminus. The rat homologue, originally named TAO1, has been demonstrated to be highly expressed in brain. In this study, the human TAO kinase 1 was transfected into human neuroblastoma SH-SY5Y cells and its biological effects on the cell morphology were observed by co-expressing the enhanced green fluorescent protein (EGFP). It was found that after 16 h of transfection the cells had shrunk, and finally became rounded when transfected with wild-type or mutant K57A genes encoding either the kinase domain (residues 1-376) or the full-length molecule (residues 1-1001). Thirty-four hours after transfection, cells floated and apoptotic bodies were observed after nuclear staining with DAPI. On the other hand, the cells that were transfected with the gene encoding the C-terminal regulatory region (residues 377-1001) of hTAOK1, appeared to remain unchanged. In order to know the signaling events involved in the above biological phenomena, caspase-3-like activities of the transfected cells were measured in the absence or presence of JNK inhibitor SP600125, in which caspase-3 and JNK (C-jun-N-terminal kinase) are both known to be critical components of the neuronal apoptosis. The results showed that the apoptotic cells exhibited elevated caspase-3-like activity, which could be reduced by SP600125 to some extent. It is concluded that human TAO kinase 1 induces apoptosis in SH-SY5Y cells and the kinase domain is essential, but its catalytic activity seems to be dispensable in this case.  相似文献   

8.
Five new phenylpropanoid amides, including N-trans-feruloyl-N′-cis-feruloyl-cadaverine (1), N,N′-trans-diferuloyl-3-oxo-cadaverine (2), N-trans-feruloyl-N′-cis-feruloyl-3-hydroxy-cadaverine (3), N,N′-cis-diferuloyl-3-hydroxy-cadaverine (4), N-trans-p-coumaroyl-N′-trans-feruloyl-3-hydroxy-cadaverine (5), were isolated from Alisma orientalis together with four known analogues. Their structural elucidations were conducted by using 1D and 2D NMR and HRESIMS spectroscopic analyses. The isolated compounds were assayed for their inhibitory activities against HCE-2, anti-oxidant effects, and their protective effects on H2O2-induced damage in human dopaminergic neuroblastoma cells (SH-SY5Y). Compounds 3, 6, and 7 displayed moderate anti-oxidant activities with IC50 values in the range of 36.940.7 μM. Compound 5 showed significant protective activity, while compounds 1, 2, 4, 7, and 8 showed moderate protective activities.  相似文献   

9.
Moriya R  Uehara T  Nomura Y 《FEBS letters》2000,484(3):253-260
We have attempted to elucidate the precise mechanism of nitric oxide (NO)-induced apoptotic neuronal cell death. Enzymatic cleavages of DEVD-AFC, VDVAD-AFC, and LEHD-AFC (specific substrates for caspase-3-like protease (caspase-3 and -7), caspase-2, and caspase-9, respectively) were observed by treatment with NO. Western blot analysis showed that pro-forms of caspase-2, -3, -6, and -7 are decreased during apoptosis. Interestingly, Ac-DEVD-CHO, a caspase-3-like protease inhibitor, blocked not only the decreases in caspase-2 and -7, but also the formation of p17 from p20 in caspase-3 induced by NO, suggesting that caspase-3 exists upstream of caspase-2 and -7. Bongkrekic acid, a potent inhibitor of mitochondrial permeability transition, specifically blocked both the loss of mitochondrial membrane potential and subsequent DNA fragmentation in response to NO. Thus, NO results in neuronal apoptosis through the sequential loss of mitochondrial membrane potential, caspase activation, and degradation of inhibitor of caspase-activated DNase (CAD) (CAD activation).  相似文献   

10.
Neuritic retraction represents a prominent feature of the degenerative phenotype associated with mutations in leucine rich repeat kinase 2 (LRRK2) that are implicated in autosomal dominant and some cases of sporadic Parkinson's disease. Alterations in macroautophagy, the vacuolar catabolism of cytoplasmic constituents, have been described in Parkinson's disease. In this study, we utilized retinoic-acid differentiated SH-SY5Y cells to determine whether autophagy contributes to mutant LRRK2-associated neurite degeneration. Transfection of pre-differentiated SH-SY5Y cells with LRRK2 cDNA containing the common G2019S mutation resulted in significant decreases in neurite length, which were not observed in cells transfected with wild type LRRK2 or its kinase-dead K1906M mutation. G2019S LRRK2 transfected cells also exhibited striking increases in autophagic vacuoles in both neuritic and somatic compartments, as demonstrated by fluorescence and western blot analysis of the autophagy marker green fluorescent protein-tagged microtubule-associated protein Light Chain 3 and by transmission electron microscopy. RNA interference knockdown of LC3 or Atg7 , two essential components of the conserved autophagy machinery, reversed the effects of G2019S LRRK2 expression on neuronal process length, whereas rapamycin potentiated these effects. The mitogen activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) kinase (MEK) inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126) reduced LRRK2-induced neuritic autophagy and neurite shortening, implicating MAPK/ERK-related signaling. These results indicate an active role for autophagy in neurite remodeling induced by pathogenic mutation of LRRK2.  相似文献   

11.
Neurochemical Research - Mitochondria are the major site of ATP production in mammalian cells. Furthermore, these organelles are a source and a target of reactive oxygen species (ROS), such as...  相似文献   

12.
过度氧化应激是诱发许多神经退变病的重要因素。叠氮钠(NaN3)是线粒体有氧呼吸链细胞色素c氧化酶(COX)的特异性抑制剂,过氧化氢(H2O2)释放氧自由基造成氧化损伤,两者都可以用于氧化应激情况下神经元损伤模型的建立。硫氧还蛋白还原酶(thioredoxin reductase,TR)特异性的还原氧化型的硫氧还蛋白(thioredoxin,TRx),调节细胞中氧化还原的平衡。现以不同浓度NaN3或H2O2,处理人神经母细胞瘤细胞(SH-SY5Y细胞),建立损伤模型。通过MTT法、形态学方法检测SH-SY5Y细胞损伤程度。同时,通过Western blot定量法、免疫细胞化学法,检测损伤的SH-SY5Y细胞中TR含量的改变,观察TR在胞内的分布。实验表明,NaN3、H2O2,均以浓度依赖方式损伤SH-SY5Y细胞;TR分布于SH-SY5Y细胞的胞浆,表明TR是一种分泌蛋白,损伤后分布无明显变化。但一定浓度的NaN3作用后3h,胞内TR水平显著降低,即神经系统内呼吸链受损可抑制TR的表达,为神经退变病的防治提供了新的思路。  相似文献   

13.
Nitric oxide (NO) is a major factor contributing to the loss of neurons in ischemic stroke, demyelinating diseases, and other neurodegenerative disorders. NO not only functions as a direct neurotoxin, but also combines with superoxide (O2) by a diffusion-controlled reaction to form peroxynitrite (ONOO), a species that contributes to oxidative signaling and cellular apoptosis. However, the mechanism by which ONOO induces apoptosis remains unclear, although subsequent formation of reactive oxygen species (ROS) has been suggested. The aim of this study was to further investigate the triggers of the apoptotic pathway using O2 scavenging with light irradiation to block ONOO production. Antiapoptotic effects of light irradiation in sodium nitroprusside (SNP)-treated SH-SY5Y cells were assayed by reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, DNA fragmentation, flow cytometry, Western blot, and caspase activity assays. In addition, NO, total ROS, O2, and ONOO levels were measured to observe changes in NO and its possible involvement in radical induction. Cell survival was reduced to approximately 40% of control levels by SNP treatment, and this reduction was increased to 60% by low-level light irradiation. Apoptotic cells were observed in the SNP-treated group, but the frequency of these was reduced in the irradiation group. NO, O2, total ROS, and ONOO levels were increased after SNP treatment, but O2, total ROS, and ONOO levels were decreased after irradiation, despite the high NO concentration induced by SNP treatment. Cytochrome c was released from mitochondria of SNP-treated SH-SY5Y cells, but not of irradiated cells, resulting in a decrease in caspase-3 and -9 activity in SNP-treated cells. Finally, these results show that 635-nm irradiation, by promoting the scavenging of O2, protected against neuronal death through blocking the mitochondrial apoptotic pathway induced by ONOO synthesis.  相似文献   

14.
Tissue transglutaminase (tTG) is a cross-linking enzyme involved in protein aggregation during Parkinson’s disease (PD) pathogenesis. Autophagy is inhibited by tTG activation via a mechanism in which cross-linking of beclin 1, an autophagy initiator at the level of the endoplasmic reticulum (ER), has been implicated. We reported increased tTG protein levels and activity at the ER in both PD brain and in a PD-mimicking cell system. Here we characterized the interaction between tTG and beclin 1 at the ER membrane and the role of tTG in reduced autophagy in an in vitro model of PD, using differentiated SH-SY5Y neurons treated with the PD-mimic MPP+. We found that under PD-mimicking conditions, beclin 1 and tTG partially colocalized at the ER, beclin 1 levels increased at the ER, and tTG readily cross-linked beclin 1 which was prevented by enzymatic blockade of tTG. Under these conditions, accumulation of beclin 1 at the ER was enhanced by inhibition of tTG activity. In line with these observations and the role of beclin 1 in autophagy, levels of the autophagy marker protein LC3II in MPP+-treated cells, were significantly increased by inhibition of tTG activity. Our data provide first evidence for a role of tTG-mediated regulation of beclin 1 and autophagy in MPP+-treated human SH-SY5Y cells.  相似文献   

15.
Yang  Rong  Wei  Li  Fu  Qing-Qing  Wang  Hua  You  Hua  Yu  Hua-Rong 《Neurochemical research》2016,41(7):1818-1830
Neurochemical Research - This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against hydrogen peroxide (H2O2) induced damage in human...  相似文献   

16.
17.
Since apoptosis appeared to be related to neurodegenerative processes, neuroprotection has been involved in investigation of therapeutic approaches focused upon pharmacological agents to prevent neuronal programmed cell death. In this regard, erythropoietin (Epo) seems to play a critical role. The present work was focused on the study of the Epo protective effect upon human neuroblastoma SH-SY5Y cells subjected to differentiation by staurosporine. Under this condition, profuse neurite outgrowth was accompanied by programmed cell death (35% of apoptotic cells by Hoechst assay, showing characteristic DNA ladder pattern). A previous treatment with recombinant human Epo (rHuEpo) increased the expression of the specific receptor for Epo while prevented apoptosis. Simultaneously, morphological changes in neurite elongation and interconnection induced by staurosporine were blocked by Epo. These Epo effects proved to be associated to the induction of Bcl-xL at the mRNA and protein levels (RT-PCR and Western blot after immunoprecipitation) and were mediated by activation of pathways inhibited by wortmannin. In conclusion, the fact that both events induced by staurosporine, cell apoptosis and differentiation, were prevented in SH-SY5Y cells previously exposed to rHuEpo suggests interrelated signaling pathways triggered by the Epo/EpoR interaction.  相似文献   

18.
Celastrol, an active component found in the Chinese herb tripterygium wilfordii has been identified as a neuroprotective agent for neurodegenerative diseases including Parkinson’s disease (PD) through unknown mechanism. Celastrol can induce autophagy, which plays a neuroprotective role in PD. We tested the protective effect of celastrol on rotenone-induced injury and investigated the underlying mechanism using human neuroblastoma SH-SY5Y cells. The SH-SY5Y cells were treated with celastrol before rotenone exposure. The cells survival, apoptosis, accumulation of α-synuclein, oxidative stress and mitochondrial function, and autophagy production were analyzed. We found celastrol (500 nM) pre-treatment enhanced cell viability (by 28.99%, P < 0.001), decreased cell apoptosis (by 54.38%, P < 0.001), increased SOD and GSH (by 120.53% and 90.46%, P < 0.01), reduced accumulation of α-synuclein (by 35.93%, P < 0.001) and ROS generation (by 33.99%, P < 0.001), preserved MMP (33.93 ± 3.62%, vs. 15.10 ± 0.71% of JC-1 monomer, P < 0.001) and reduced the level of cytochrome C in cytosol (by 45.57%, P < 0.001) in rotenone treated SH-SY5Y cells. Moreover, celastrol increased LC3-II/LC3 I ratio by 60.92% (P < 0.001), indicating that celastrol activated autophagic pathways. Inhibiting autophagy by 3-methyladenine (3-MA) abolished the protective effects of celastrol. Our results suggested that celastrol protects SH-SY5Y cells from rotenone induced injuries and autophagic pathway is involved in celastrol neuroprotective effects.  相似文献   

19.

It is known that oxidative stress may cause neuronal injury and several experimental models showed that As2O3 exposure causes oxidative stress. Lycopene, a carotenoid, has been shown to have protective effect in neurological disease models due to antioxidant activity, but its effect on As2O3-induced neurotoxicity is not identified yet. The aim of this study is to investigate the effects of lycopene on As2O3-induced neuronal damage and the related mechanisms. Cell viability was determined by the MTT assay. Lycopene was administrated with different concentrations (2, 4, 6 and 8 µM) one hour before 2 µM As2O3 exposure in SH-SY5Y human neuroblastoma cells. The anti-oxidant effect of lycopene was determined by measuring superoxide dismutase (SOD), catalase (CAT) hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS). MTT results and LDH cytotoxicity analyses showed that pretreatment with 8 µM lycopene significantly improved the toxicity due to As2O3 exposure in SH?SY5Y neuroblastoma cells. Pretreatment with lycopene significantly increased the activities of anti?oxidative enzymes as well as total antioxidant status and decreased total oxidative status in As2O3 exposed cells. The results of this study indicate that lycopene may be a potent neuroprotective against oxidative stress and could be used to prevent neuronal injury or death in several neurological diseases.

  相似文献   

20.
6-Hydroxydopamine (6-OHDA) is a neurotoxin to produce an animal model of Parkinson's disease. 6-OHDA increased the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), a biomarker of oxidatively damaged DNA, and induced apoptosis in human neuroblastoma SH-SY5Y cells. Iron or copper chelators inhibited 6-OHDA-induced 8-oxodG formation and apoptosis. Thus, iron and copper are involved in the intracellular oxidatively generated damage to DNA, a stimulus for initiating apoptosis. This study examined DNA damage caused by 6-OHDA plus metal ions using (32)P-5'-end-labelled DNA fragments. 6-OHDA increased levels of oxidatively damaged DNA in the presence of Fe(III)EDTA or Cu(II). Cu(II)-mediated DNA damage was stronger than Fe(III)-mediated DNA damage. The spectrophotometric detection of p-quinone and the scopoletin method showed that Cu(II) more effectively accelerated the 6-OHDA auto-oxidation and H(2)O(2) generation than Fe(III)EDTA. This study suggests that copper, as well as iron, may play an important role in 6-OHDA-induced neuronal cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号