首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Throughout immeasurable time, microorganisms evolved and accumulated remarkable physiological and functional heterogeneity, and now constitute the major reserve for genetic diversity on earth. Using metagenomics, namely genetic material recovered directly from environmental samples, this biogenetic diversification can be accessed without the need to cultivate cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major resource for bioprospecting; furthermore, this material is a major asset in the search for new biocatalytics (enzymes) for various industrial processes, including the production of biofuels from plant feedstocks. However, despite the contributions from metagenomics technologies consequent upon the discovery of novel enzymes, this relatively new enterprise requires major improvements. In this review, we compare function-based metagenome screening and sequence-based metagenome data mining, discussing the advantages and limitations of both methods. We also describe the unusual enzymes discovered via metagenomics approaches, and discuss the future prospects for metagenome technologies.  相似文献   

2.
Domains of fifteen recently found families of hypothetical glycoside hydrolases (GHL1-GHL15) have been used for iterative screening of the protein database. Evolutionary connections between representatives of these families were revealed. Also, their relationship with members of the following known families of protein domains were found: GH5, GH13, GH13_33, GH17, GH18, GH20, GH27, GH29, GH31, GH35, GH36A, GH36B, GH36C, GH36D, GH36E, GH36F, GH36G, GH36H, GH36J, GH36K, GH39, GH42, GH53, GH66, GH97, GH101, GH107, GH112, GH114, COG1082, COG1306, COG1649, COG2342, DUF3111, and PF00962. The unclassified homologues were grouped into 35 new families of hypothetical glycoside hydrolases: GHL16-GHL50. Position of GHL1-GHL15 families in the hierarchical classification of glycoside hydrolases and their homologues is discussed. Several new superfamilies of protein domains are suggested.  相似文献   

3.
This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin.  相似文献   

4.
5.
A yeast strain was isolated from an insect-tunnelled piece of wood from Equatorial Africa. This sporogenous yeast is aPichia sensu stricto:Pichia heimii.
Resume Une levure a été isolée d'un morceau de bois creusé de galeries d'insectes et provenant d'Afrique équatoriale. Cette levure, sporogène, appartient au genre Pichia s.str.: Pichia heimii.


The author wishes to thank Professor J. Boidin for furnishing the Central African material and for his comments upon this work, and Mrs. S. Poncet for her aid in the application of the mathematical method.  相似文献   

6.
Physiological roles of plant glycoside hydrolases   总被引:2,自引:0,他引:2  
Minic Z 《Planta》2008,227(4):723-740
The functions of plant glycoside hydrolases and transglycosidases have been studied using different biochemical and molecular genetic approaches. These enzymes are involved in the metabolism of various carbohydrates containing compounds present in the plant tissues. The structural and functional diversity of the carbohydrates implies a vast spectrum of enzymes involved in their metabolism. Complete genome sequence of Arabidopsis and rice has allowed the classification of glycoside hydrolases in different families based on amino acid sequence data. The genomes of these plants contain 29 families of glycoside hydrolases. This review summarizes the current research on plant glycoside hydrolases concerning their principal functional roles, which were attributed to different families. The majority of these plant glycoside hydrolases are involved in cell wall polysaccharide metabolism. Other functions include their participation in the biosynthesis and remodulation of glycans, mobilization of energy, defence, symbiosis, signalling, secondary plant metabolism and metabolism of glycolipids.  相似文献   

7.
Several in the field-and many outside-consider that solving the three-dimensional structures of more glycoside hydrolases (GHs) and glycosyltransferases (GTs) confines to stamp collection and some even think that there is no main revelation to expect in this area. It is wrong! The past year has come as a refreshing wake-up call with major surprises for both GHs and GTs.  相似文献   

8.
The gene encoding the alpha-agarase from "Alteromonas agarilytica" (proposed name) has been cloned and sequenced. The gene product (154 kDa) is unrelated to beta-agarases and instead belongs to a new family of glycoside hydrolases (GH96). The alpha-agarase also displays a complex modularity, with the presence of five thrombospondin type 3 repeats and three carbohydrate-binding modules.  相似文献   

9.
Many saproxylic species are threatened in Europe because of habitat decline. Hollow trees represent an important habitat for saproxylic species. Artificial habitats may need to be created to maintain or increase the amount of habitat due to natural habitat decline. This study investigated the extent to which saproxylic beetles use artificial habitats in wooden boxes. The boxes were placed at various distances (0–1800 m) from known biodiversity hotspots with hollow oaks and studied over 10 years. Boxes were mainly filled with oak saw dust, oak leaves, hay and lucerne flour. In total, 2170 specimens of 91 saproxylic beetle species were sampled in 43 boxes. The abundance of species associated with tree hollows, wood rot and animal nests increased from the fourth to the final year, but species richness declined for all groups. This study shows that wooden boxes can function as saproxylic species habitats. The artificial habitats developed into a more hollow-like environment during the decade long experiment with fewer but more abundant tree hollow specialists.  相似文献   

10.
Evolutionary connections were analyzed for endo-β-xylanases, which possess the GH10 family catalytic domains. A homology search yielded thrice as many proteins as are available from the Carbohydrate-Active Enzymes (CAZy) database. Lateral gene transfer was shown to play an important role in evolution of bacterial proteins of the family, especially in the phyla Acidobacteria, Cyanobacteria, Planctomycetes, Spirochaetes, and Verrucomicrobia. In the case of Verrucomicrobia, 23 lateral transfers from organisms of other phyla were detected. Evolutionary relationships were observed between the GH10 family domains and domains with the TIM-barrel tertiary structure from several other glycosidase families. The GH39 family of glycoside hydrolases showed the closest relationship. Unclassified homologs were grouped into 12 novel families of putative glycoside hydrolases (GHL51–GHL62).  相似文献   

11.
12.
13.
The objectives of this study were to characterize Fibrobacter succinogenes glycoside hydrolases from different glycoside hydrolase families and to study their synergistic interactions. The gene encoding a major endoglucanase (endoglucanase 1) of F. succinogenes S85 was identified as cel9B from the genome sequence by reference to internal amino acid sequences of the purified native enzyme. Cel9B and two other glucanases from different families, Cel5H and Cel8B, were cloned and overexpressed, and the proteins were purified and characterized. These proteins in conjunction with two predominant cellulases, Cel10A, a chloride-stimulated cellobiosidase, and Cel51A, formerly known as endoglucanase 2 (or CelF), were assayed in various combinations to assess their synergistic interactions using ball-milled cellulose. The degree of synergism ranged from 0.6 to 3.7. The two predominant endoglucanases produced by F. succinogenes, Cel9B and Cel51A, were shown to have a synergistic effect of up to 1.67. Cel10A showed little synergy in combination with Cel9B and Cel51A. Mixtures containing all the enzymes gave a higher degree of synergism than those containing two or three enzymes, which reflected the complementarity in their modes of action as well as substrate specificities.  相似文献   

14.
15.

Glycosidases are used in the food, chemical, and energy industries. These proteins are some of the most frequently used such enzymes, and their thermostability is essential for long-term and/or repeated use. In addition to thermostability, modification of the substrate selectivity and improvement of the glycosidase activities are also important. Thermostabilization of enzymes can be performed by directed evolution via random mutagenesis or by rational design via site-directed mutagenesis; each approach has advantages and disadvantages. In this paper, we introduce thermostabilization of glycoside hydrolases by rational protein design using site-directed mutagenesis along with X-ray crystallography and simulation modeling. We focus on the methods of thermostabilization of glycoside hydrolases by linking the N- and C-terminal ends, introducing disulfide bridges, and optimizing β-turn structures to promote hydrophobic interactions.

  相似文献   

16.
NOX4 is an enigmatic member of the NOX (NADPH oxidase) family of ROS (reactive oxygen species)-generating NADPH oxidases. NOX4 has a wide tissue distribution, but the physiological function and activation mechanisms are largely unknown, and its pharmacology is poorly understood. We have generated cell lines expressing NOX4 upon tetracycline induction. Tetracycline induced a rapid increase in NOX4 mRNA (1 h) followed closely (2 h) by a release of ROS. Upon tetracycline withdrawal, NOX4 mRNA levels and ROS release decreased rapidly (<24 h). In membrane preparations, NOX4 activity was selective for NADPH over NADH and did not require the addition of cytosol. The pharmacological profile of NOX4 was distinct from other NOX isoforms: DPI (diphenyleneiodonium chloride) and thioridazine inhibited the enzyme efficiently, whereas apocynin and gliotoxin did not (IC(50)>100 muM). The pattern of NOX4-dependent ROS generation was unique: (i) ROS release upon NOX4 induction was spontaneous without need for a stimulus, and (ii) the type of ROS released from NOX4-expressing cells was H(2)O(2), whereas superoxide (O(2)(-)) was almost undetectable. Probes that allow detection of intracellular O(2)(-) generation yielded differential results: DHE (dihydroethidium) fluorescence and ACP (1-acetoxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine) ESR measurements did not detect any NOX4 signal, whereas a robust signal was observed with NBT. Thus NOX4 probably generates O(2)(-) within an intracellular compartment that is accessible to NBT (Nitro Blue Tetrazolium), but not to DHE or ACP. In conclusion, NOX4 has a distinct pharmacology and pattern of ROS generation. The close correlation between NOX4 mRNA and ROS generation might hint towards a function as an inducible NOX isoform.  相似文献   

17.
18.
Marana SR 《IUBMB life》2006,58(2):63-73
ss-glycosidases are active upon a large range of substrates. Besides this, subtle changes in the substrate structure may result in large modifications on the ss-glycosidase activity. The characterization of the molecular basis of ss-glycosidases substrate preference may contribute to the comprehension of the enzymatic specificity, a fundamental property of biological systems. ss-glycosidases specificity for the monosaccharide of the substrate nonreducing end (glycone) is controlled by a hydrogen bond network involving at least 5 active site amino acid residues and 4 substrate hydroxyls. From these residues, a glutamate, which interacts with hydroxyls 4 and 6, seems to be a key element in the determination of the preference for fucosides, glucosides and galactosides. Apart from this, interactions with the hydroxyl 2 are essential to the ss-glycosidase activity. The active site residues forming these interactions and the pattern of the hydrogen bond network are conserved among all ss-glycosidases. The region of the ss-glycosidase active site that interacts with the moiety (called aglycone) which is bound to the glycone is formed by several subsites (1 to 3). However, the majority of the non-covalent interactions with the aglycone is concentrated in the first one, which presents a variable spatial structure and amino acid composition. This structural variability is in accordance with the high diversity of aglycones recognized by ss-glycosidases. Hydrophobic interactions and hydrogen bonds are formed with the aglycone, but the manner in which they control the ss-glycosidase specificity still remains to be determined.  相似文献   

19.
A phylogenetic analysis of the glycoside hydrolases of family 3 (GH3s) was conducted in order to infer particular trends in its evolution: functional specialization, gene transfer events, gene duplications and paralogous evolution, and gene deletions. The phylogenetic analysis of GH3s revealed six clusters, i.e., A, B, C, D, E, and F that could fit the definition of 3 sub-families, i.e., AB, AB' and AB". While the sub-families AB' and AB" contain a single cluster, F and E, respectively, the AB sub-family is sub-divided into four clusters. Global analysis of the GH3 phylogenetic tree suggests a primary burst of amplification of the GH3s that might have led to these sub-families. Specializations, gene transfers, and gene duplications among each of these sub-families and phylogenetic clusters might then have occurred and have been inferred. The fine comparison of the enzyme properties and phylogenetic relationships of GH3s allowed to detect common functional groups that belong to the same cluster (D, E or F), or sub-cluster (A1, A2 or B2). The prokaryotic and eukaryotic beta-xylosidases and beta-glucosidases belong to the AB and AB' sub-families, and the N-acetylglucosaminidases are in sub-family AB" (in cluster E). In some instances (B1, B2, C1, C2, and C3), the lack of data and/or the high heterogeneity of the hydrolytic properties did not allow to infer a particular link between an enzyme functional group and a phylogenetic cluster, suggesting the emergence of some highly specialized GH3s.  相似文献   

20.
Abstract

Larvae of Aenetus virescens (Doubleday) have previously been recorded only from the wood of live trees or shrubs. This paper describes the circumstances in which larvae occupy decaying wood in the forest habitat. Young larvae are considered to exist in dead wood for no more than a year. They then disperse to live trees, in which development is completed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号