首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hybridoma technology of Kohler and Milstein (1975) was utilized to produce monoclonal antibodies against the enkephalins. Two hybridomas, AD4 and DB4, produced monoclonal antibodies of the IgG type 1 class against Leu5-enkephalin that were highly specific for Leu5- and Met5-enkephalin. AD4 exhibited almost equal reactivity with either Leu5- or Met5-enkephalin, whereas DB4 exhibited only a 20% cross-reactivity with Met5-enkephalin. The IC50 of these monoclonal antibodies were approximately two orders of magnitude greater than the IC50 a polyclonal antiserum against enkephalins (A206; Miller et al 1978) used routinely in many immunochemical and immunocytochemical studies.The monoclonal antibodies, AD4 and DB4, exhibited specific sequence and size requirements for binding enkephalin-related peptides. The amino acid sequence Gly-Gly-Phe-Leu or Gly-Gly-Phe-Met was essential for recognition by AD4 and DB4. However, Tyr-Gly-Gly-Phe which lacks Leu or Met in the fifth position did not react with our monoclonal antibodies. Moreover, enkephalin-related peptides in which the enkephalin sequence was situated at the amino terminus and which contained six or more amino acids did not react significantly with AD4 or DB4. In particular, unlike the polyclonal antiserum A206, our monoclonal antibodies do not react with dynorphins 1–6 or 1–13. However, when the monoclonal antibody (AD4) was used to localize immunohistochemically the population of enkephalinergic amacrine cells in the chicken retina, it provided a staining pattern quite comparable to that observed in previous studies (Watt et al., 1983) using the polyclonal enkephalin antiserum A206. This finding therefore demonstrates that the immunoreactive products visualized in the enkephalin-immunoreactive amacrine cells of the chicken retina with the polyclonal antiserum correspond to authentic enkephalin or peptides very closely related to the enkephalins.  相似文献   

2.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

3.
Specific binding of [3H][D-Ala2,D-Leu5]enkephalin, [3H]ethylketocyclazocine, 5-[3H]hydroxytryptamine, and [3H]spiperone was examined in neuroblastoma-brain hybrid cell line NCB-20 following exposure to inhibitors of N-linked protein glycosylation (tunicamycin, TM) and oligosaccharide processing (swainsonine, SW). TM treatment reduced ligand binding at delta- and sigma-opiate receptors and neuroleptic binding sites (20 to 50% of control), with no discernible effect on the binding properties of 5HT1-serotonin receptors. In contrast, exposure to SW resulted in a three-fold increase in binding capacity of sigma-receptors, while decreasing receptor affinity for ligand. SW treatment did not alter ligand interactions with either sigma-receptors or neuroleptic binding sites, but did reduce specific binding of serotonin to 5HT1-receptors. The effects of TM and SW on distinct receptor subpopulations were further demonstrated by attenuation of opiate and serotonin-mediated regulation of intracellular cyclic AMP.  相似文献   

4.
Forty different monoclonal antibodies were produced from hybridomas that were raised against human Lp[a]. Of these, 14 strongly cross-reacted with plasminogen on ELISA screening assays while 16 clearly did not and 10 were only marginally cross-reactive. We took advantage of the homology between plasminogen and apo[a] to define the epitopes of 8 strongly cross-reacting monoclonal antibodies. We were able to subdivide these into four general categories based upon site competition assays (using both plasminogen and Lp[a]), and their reactivity with elastolytically derived plasminogen fragments. Group A monoclonal antibodies (F1 1E3, F2 3A3) recognized epitopes within the kringle 5 and protease domains (miniplasminogen) of plasminogen. The group B monoclonal antibody (F6 1A3) reacted solely with plasminogen kringle 4-like domains and appeared to recognize a limited number of sites on Lp[a]. Group C monoclonal antibodies (F6 1B5, F6 1G9) recognized a second, more frequently distributed site within these kringle 4-like domains. The final group, D, monoclonal antibodies (F6 2C3, F6 2G2, F6 3F4) reacted with a cluster of sites found associated with kringle 4-like domains but also reacted with the miniplasminogen domain. Interestingly, only the members of this group were able to interfere with the proteolytic activity of plasmin. Neither periodate treatment of Lp[a] nor incubation of Lp[a] with epsilon-aminocaproic acid affected the binding of any of our monoclonal antibodies.  相似文献   

5.
A simple and reproducible radioimmunoassay of the epidermal growth factor (EGF) receptor which uses 32P-labeled EGF receptor and anti-receptor monoclonal antibodies is reported. In vitro phosphorylation of A431 cell membranes with [gamma-32P]ATP in the presence of 20% dimethyl sulfoxide (which stimulates autophosphorylation of the EGF receptor) and 10 microM Na3VO4 (a potent inhibitor of phosphotyrosyl protein phosphatase) provides radiolabeled EGF receptor for radioimmunoassay without further purification. The most selective phosphorylation of the EGF receptor is achieved at ATP concentrations of 0.1-0.2 microM, which corresponds to the reported Km value for the autophosphorylation reaction of the EGF receptor (W. Weber, P.J. Bertics, and G.N. Gill, 1984, J. Biol. Chem. 259, 14631-14939). The incorporation of 32P into EGF receptors increases in proportion to the increase of ATP concentration up to 6 mol of labeled phosphate at 2.0 microM ATP. The label is entirely on tyrosine residues. The cell membranes can be stored at -70 degrees C for 3 months without loss of immunoreactivity and autophosphorylating activity. Standard curves for the radioimmunoassay were constructed employing either A431 cell membranes or whole cell homogenates containing a known amount of EGF receptor. The assay can detect 7 X 10(10) EGF receptor molecules or 20 ng of the receptor protein, and can quantitatively distinguish the difference in EGF receptor numbers between A431 cells and 29E2 and KB cells with 10-fold and 15-fold fewer receptors than A431 cells, respectively. 29E2 cells and KB cells express twofold more immunoreactive EGF receptors than EGF-binding sites. In contrast, A431 cells possess the same number of immunoreactive sites and receptor sites for EGF binding. To assess total EGF receptor expression, it is necessary to use a method which detects EGF receptors regardless of their intrinsic kinase activity, or capacity to bind EGF. This radioimmunoassay detects immunoreactive receptor molecules, even those which do not bind EGF.  相似文献   

6.
A variety of data support the existence of an opioid receptor complex composed of distinct but interacting mu cx and delta cx binding sites, where "cx" indicates "in the complex." The ability of subantinociceptive doses of [Leu5]enkephalin and [Met5]enkephalin to potentiate and attenuate morphine-induced antinociception, respectively, is thought to be mediated via their binding to the delta cx binding site. [D-Pen2,D-Pen5]Enkephalin also modulates morphine-induced antinociception, but has very low affinity for the delta cx binding site in vitro. In the present study, membranes were depleted of their delta ncx binding sites by pretreatment with the site-directed acylating agent, (3S,4S)-(+)-trans-N-[1-[2-(4-isothiocyanato)phenyl)-ethyl]-3-methy l-4- piperidyl]-N-phenylpropaneamide hydrochloride, which permits selective labeling of the delta cx binding site with [3H][D-Ala2,D-Leu5]enkephalin. The major findings of this study are that with this preparation of rat brain membranes: a) there are striking differences between the delta cx and mu binding sites; and b) both [D-Pen2,D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin exhibit high affinity for the delta cx binding site.  相似文献   

7.
Our observations that opioid peptides have direct effects on islet insulin secretion and liver glucose production prompted a search for endogenous opiates and their receptors in these peripheral tissues. Mu-, delta- and kappa-receptor-active opiates were demonstrated in brain, pancreas and liver extracts by displacement studies using selective ligands for the three opiate receptor subtypes [( 3H][D-Ala2,MePhe4,Gly5-ol]enkephalin, [3H][D-Ala2,D-Leu5]enkephalin and [3H]dynorphin respectively). Receptor-active opiates in brain extracts exhibited a stronger preference for delta-opiate-receptor sites than for mu and kappa sites. Pancreatic extract opiates demonstrated a similar activity at mu and delta sites, but substantially less at kappa sites. Liver extracts displayed similar selectivity for all three sites. The affinities of the receptor-active opiates for mu-, delta- and kappa-receptor subtypes displayed a rank order of potency: brain much greater than pancreas greater than liver. Total immunoreactive beta-endorphin and [Met5]enkephalin levels in liver and hepatocytes were greater than those in brain. Immunoreactive [Met5]enkephalin levels in pancreas were similar to, but beta-endorphin levels were substantially higher than, those in brain. Delta and kappa opiate-binding sites of high affinity were identified in crude membrane preparations of islets of Langerhans, but no specific opiate-binding sites could be demonstrated in liver membrane preparations. Immunoreactive dynorphin and beta-endorphin were demonstrated by immunogold labelling in rat pancreatic islet cells. No positive staining of liver sections for opioids was observed. These results suggest that the tissue content of opiate-receptor-active compounds in the pancreas and the liver is very significant and could contribute to the regulation of normal blood glucose levels.  相似文献   

8.
The rabbit cerebellum has been shown to contain significant quantities of opioid receptors consisting of both mu- and kappa-subtypes. To determine the nature of the endogenous opioid ligands in this tissue, extracts from rabbit cerebellum were separated by various chromatography techniques and fractions were assayed initially for opioid peptides with a radioimmunoassay capable of detecting all peptides with an amino-terminal Tyr-Gly-Gly-Phe sequence. This sequence is common to all mammalian opioid peptides and is critical for recognition by all known opioid receptors. Each of the three immunoreactive opioid peptide peaks detected was purified to homogeneity and subjected to amino acid composition and sequence analysis. One peak was analyzed further by mass spectrometry. This identified the major opioid peptides in the cerebellum as [Met5]enkephalin, [Leu5]enkephalin, and heptapeptide [Met5]enkephalyl-Arg6-Phe7. The comprehensiveness of this initial detection scheme in identifying biologically active opioid peptides was substantiated through subsequent analysis. Using specific radioimmunoassays for representative opioid peptides of the three opioid systems currently known, no other peptides of either the proenkephalin, proopiomelanocortin, or prodynorphin series were detected in any appreciable amounts. Collectively, these results are consistent with the position that rabbit cerebellar opioids are derived from proenkephalin. However, given that no appreciable quantities of either [Met5]enkephalyl-Arg6-Arg7-Val8-NH2 (metorphamide) or [Met5]enkephalyl-Arg6-Gly7-Leu8 were detected suggests that rabbit proenkephalin may have a slightly altered sequence and/or is differentially processed relative to other mammalian species studied.  相似文献   

9.
The production of a bi-specific monoclonal antibody that simultaneously recognizes mouse kappa light chains and horseradish peroxidase (HRP) for use as a general developing reagent in a wide variety of immunobased techniques is described. This antibody, named McC10, was produced by the fusion of an aminopterin-sensitive interspecies hybridoma which secretes rat monoclonal antibodies against HRP (RAP2.Ag) and splenocytes from a rat immunized with whole mouse immunoglobulin (Ig)G. The hybrid-hybridoma generated from this fusion expresses and secretes rat Igs of the IgG1 and IgG2a subclasses, as determined by radial immunodiffusion. In competitive binding solid-phase enzymatic assays, McC10 was found to cross-react with all four mouse IgG subclasses as well as mouse kappa light chains. In contrast, in this type of assay, McC10 did not appear to recognize mouse IgA, IgM or lambda light chains. However, IgM-bearing kappa light chains were recognized by immunocytochemistry. Epitope specificity of this bi-specific antibody was more clearly determined on immunoblots where McC10 was found to exclusively recognize mouse kappa light chains and display no cross-reactivity with mouse Ig heavy chains nor with kappa light chains from rat or rabbit. In addition, McC10 was used successfully in two-step immunocytochemistry (ICC) for the localization of enkephalin, nerve growth factor (NGF) receptor and paired helical filament-immunoreactive sites in rat brain, rat skin and human brain, respectively, using mouse IgG's and IgM's as primary antibodies. McC10 compared favourably with peroxidase-anti-peroxidase (PAP) ICC with respect to sensitivity but was markedly superior with respect to specificity when used in fixed human brain or rat skin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   

11.
W E Myers  J A Glasel 《Life sciences》1986,38(19):1783-1788
Receptor subclass recognition properties of affinity-purified rabbit polyclonal anti-idiotypic anti-opiate receptor antibodies in various membrane preparations have been determined. The anti-receptor immunoglobulins significantly decrease binding of 3H-[D-Ala2,-MePhe4,Gly-ol5]enkephalin, a highly selective mu agonist, in rat neural membrane. In the presence of a concentration of the unlabeled ligand sufficient to block existing mu sites, the antibodies compete, to a lesser degree with 3H-[D-Ala2,D-Leu5]enkephalin for delta site occupancy in both rat neural membrane, and neuroblastoma x glioma membrane preparations. The antibodies do not displace 3H-ethylketocyclazocine from rat brain or guinea pig cerebellum.  相似文献   

12.
Summary Thyroid C-cell reactivity to 15 monoclonal antibodies raised against a series of pancreatic islet cells (H[human]ISL, B[bovine]ISL and R[rat]ISL) was evaluated using an indirect immunoperoxidase technique on frozen thyroid sections. Of the monoclonal anti-islet cell antibodies, five reacted specifically with bovine C-cells or human hyperplastic and neoplastic C-cells but not with follicular cells. Two monoclonal antibodies of the bovine series showed strong immunoreactivity with C-cells and only a weakly positive immunostaining of follicular cells. Five monoclonal antibodies reacted with both thyroid C-cells and follicular cells, whereas 3 monoclonal anti-islet cell antibodies did not stain any cell type of the thyroid. In human medullary carcinomas, calcitonin- and somatostatin-producing neoplastic cells were immunoreactive with the same monoclonal antibodies as were normal human C-cells. The protein bands identified by the monoclonal antibodies in human medullary carcinomas had the same molecular weight as those from pancreatic islet extracts. Our study demonstrates the presence of similar differentiation antigens on thyroid C-cells and pancreatic islet cells; this further illustrates common modes of differentiation and specialisation of these embryologically different members of the dispersed neuroendocrine system. The crossreactivity of seven of the monoclonal antibodies investigated with follicular epithelium of the thyroid suggests the existence of common antigenic determinants in different endocrine organs and may partly explain the multiple organ autoimmune response found in patients with polyendocrine diseases.  相似文献   

13.
A panel of six mouse monoclonal antibodies (IgG1) has been prepared against purified rat urinary kallikrein (EC 3.4.21.35) and characterized. In radioimmunoassay, the antibody titres of ascitic fluid giving 50% binding to 125I-kallikrein range from 1:2 X 10(3) to 1:1 X 10(6). Antibodies from four of the clones show no cross-reactivity with human urinary kallikrein, rat urinary esterase A or tonin. However, antibodies from a fifth clone cross-react with tonin and, from a sixth, with both urinary esterase A and tonin. Three of the kallikrein affinity-purified monoclonal antibodies inhibited, whereas one of the antibodies stimulated, kallikrein activity. Tissue kallikrein from rat submandibular-gland and pancreatic extracts and urine were labelled with [14C]di-isopropyl phosphofluoridate, immunoprecipitated with each of the six monoclonal antibodies and identified to be 38 kDa proteins, similar in size to purified rat urinary kallikrein. Western-blot analysis shows that 125I-labelled kallikrein monoclonal antibodies (V4D11) bind directly to a 38 kDa protein in submandibular-gland and pancreatic extracts and urine. Cell-free translation products of submandibular-gland polyadenylylated[poly(A)+]mRNA were immunoprecipitated with affinity-purified sheep anti-kallikrein antibodies and three monoclonal antibodies (V4D11, V4G6 and V1C3). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these immunoprecipitates revealed that two kallikrein precursors with Mr values of 37 000 and 35 000 are encoded by submandibular-gland mRNA. The third monoclonal antibody, V1C3, which binds to active kallikrein, did not recognize either precursor form. Collectively, the data show that these monoclonal antibodies comprise a set of powerful and specific reagents for studies of tissue kallikreins.  相似文献   

14.
Monoclonal anti-idiotypic antibodies to opioid receptors   总被引:3,自引:0,他引:3  
Two monoclonal anti-idiotypic antibodies (anti-Id-135 and anti-Id-14, both of the IgM class) which interact with the binding site of opioid receptors were generated. A monoclonal anti-beta-endorphin antibody (3-E7) which displays binding characteristics for opioid ligands similar to opioid receptors served as the antigen (Gramsch, C., Meo, T., Riethmüller, G., and Herz, A., (1983) J. Neurochem. 40, 1220-1226; Meo, T., Gramsch, C., Inan, R., H?llt, V., Weber, E., Herz, A., and Riethmüller, G. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4048-4088) and the hybridomas obtained were screened for anti-idiotypic antibodies with Fab fragments of 3-E7. The anti-idiotypes were then screened for opioid binding to rat brain membrane receptors, yielding several positive clones two of which were more intensively studied. Both anti-idiotypic antibodies were about equally potent in displacing the mu- and delta-opioid receptor ligands [3H]dihydromorphine, 125I-labeled beta-endorphin, [D-Ala2, D-Leu5-3H]enkephalin and [3H]naloxone from rat brain membrane opioid receptors; no interaction was observed with the kappa-ligands [3H]ethylketazocine or [3H]bremazocine. The anti-idiotypic antibodies were able to precipitate [3H] diprenorphine binding sites from solubilized opioid receptor preparations. In addition, both antibodies showed opioid antagonistic properties as demonstrated by their abilities to block the inhibitory effect of [D-Ala2, D-Leu5-3H]enkephalin on prostaglandin E1-stimulated cAMP accumulation in NG 108-15 hybrid cells. Our findings demonstrate the successful generation of monoclonal antibodies interacting with membrane-bound and solubilized opioid receptors of the mu- and delta-type.  相似文献   

15.
Selective binding of [3H]bremazocine and [3H]-ethylketocyclazocine to kappa-opioid receptor sites in frog (Rana esculenta) brain membranes is irreversibly inactivated by the sulfhydryl group alkylating agent N-ethylmaleimide (NEM). Pretreatment of the membranes with kappa-selective compounds [ethylketocyclazocine (EKC), dynorphin (1-13), or U-50,488H] but not with [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO; mu specific ligand) or [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DADLE; delta specific ligand) strongly protects the binding of the radioligands against NEM inactivation. These results provide more evidence for the existence of kappa-opioid receptors in frog brain. The relatively high concentrations of NEM that are needed to decrease the specific binding of [3H]bremazocine together with the observation of an almost complete protection of its binding sites by NaCl suggest that bremazocine may act as an opioid antagonist in frog brain.  相似文献   

16.
Monoclonal antibodies against electrophoretically pure thymidylate synthase from HeLa cells have been produced. Antibodies (M-TS-4 and M-TS-9) from hybridoma clones were shown by enzyme-linked immunoassay to recognize thymidylate synthase from a variety of human cell lines, but they did not bind to thymidylate synthase from mouse cell lines. The strongest binding of antibodies was observed to enzyme from HeLa cells. These two monoclonal antibodies bind simultaneously to different antigenic sites on thymidylate synthase purified from HeLa cells, as reflected by a high additivity index and results of cross-linked radioimmunoassay. Both monoclonal antibodies inhibit the activity of thymidylate synthase from human cell lines. The strongest inhibition was observed with thymidylate synthase from HeLa cells. Monoclonal antibody M-TS-9 (IgM subclass) decreased the rate of binding of [3H]FdUMP to thymidylate synthase in the presence of 5,10-methylenetetrahydrofolate while M-TS-4 (IgG1) did not change the rate of ternary complex formation. These data indicate that the antibodies recognize different epitopes on the enzyme molecule.  相似文献   

17.
Tissues of the reproductive tract have been shown to contain mRNAs coding for pro-opiomelanocortin (POMC), pro-enkephalin and pro-dynorphin. However, the amounts of immunoreactive opioid peptides in these tissues are low, and in the case of the enkephalins and dynorphin, the molecular species responsible for the immunoreactivities have not been characterized. The chromatographic properties of dynorphin and enkephalin immunoreactivities in extracts of guinea pig and rat testis have therefore been determined. Dynorphin A and dynorphin B immunoreactivity was heterogeneous, with a significant amount attributable to high-molecular-weight forms. About 20% of the dynorphin A immunoreactivity, and about 40% of the dynorphin B immunoreactivity, in guinea pig testis extracts behaved as authentic dynorphin A or B, respectively during fractionation by ion exchange, gel filtration and high-performance liquid chromatography. Both high- and low-molecular-weight forms of [Leu5]enkephalin immunoreactivity were also present, with roughly 50-70% of the immunoreactivity attributable to low-molecular-weight forms. In extracts of guinea pig testis only a small part of this immunoreactivity eluted as authentic [Leu5]enkephalin during high-performance liquid chromatography. In rat testis most of the low-molecular-weight [Leu5]enkephalin immunoreactivity behaved as the authentic peptide. These results confirm that opioid peptides are produced in guinea pig and rat testis, and demonstrate that immunoreactive forms of the peptides similar to those found in brain and pituitary are present in the tissue.  相似文献   

18.
Abstract: To investigate transsynaptic effects on peptides of adrenal chromaffin cells in the rat, presynaptic sympathetic terminals were destroyed by intravenous injection of monoclonal antibodies to acetylcholinesterase. At several times thereafter, neuropeptide Y (NPY)-like immunoreactivity (NPY-IR) and methionine-enkephalin-like immunoreactivity (Met-Enk-IR) were measured by radioimmunoassay. Within 2 days of antibody injection, adrenal Met-Enk-IR increased five- to 10-fold and NPY-IR increased 50%. These effects were accompanied by large increases in proenkephalin A mRNA assayed by polymerase chain reaction. The peptide responses could reflect either an acute activation, as presynaptic terminals degenerated, or a chronic synaptic inactivation after terminal degeneration. To test the possibilities, muscarinic and nicotinic receptors were inhibited by repeated injection of atropine (1 mg/kg) and chlorisondamine (5 mg/kg). Measurements of urinary free catecholamine excretion showed that this treatment prevented the paroxysmal release of norepinephrine and reduced the release of epinephrine that normally followed injection of acetylcholinesterase antibodies. When the drugs were given alone for 2 or 4 days, adrenal Met-Enk-IR increased modestly and NPY-IR remained steady or declined. When given together with acetylcholinesterase antibodies, the cholinergic antagonists blocked the increase of NPY-IR but not Met-Enk-IR. Adding naloxone (1 mg/kg) to the treatment regimen enhanced the blockade of epinephrine excretion and largely prevented the antibody-induced increase in Met-Enk-IR. These findings indicate that adrenal NPY and enkephalin are not regulated identically. Adrenal NPY behaves as though controlled by transsynaptic cholinergic input. On the other hand, adrenal enkephalin may be regulated by additional or different mechanisms, possibly involving peptidergic transmission or synaptic inactivation.  相似文献   

19.
Polyclonal and monoclonal antibodies were raised against synthetic peptides (or fusion protein) corresponding to cDNA-deduced amino acid sequences unique to the human and mouse retinoic acid (RA) receptor alpha 1 (hRAR-alpha 1 and mRAR-alpha 1, respectively). Two rabbit polyclonal antibodies directed against either the F region fused to DHFR [RP alpha (F)] or the D2 region [RP alpha (D2)] were selected. Using either immunocytochemistry, Western blotting analysis, or immunoprecipitation, they were found to be specific for human and mouse RAR-alpha 1 proteins produced by COS-1 cells transiently transfected with vectors expressing the RAR-alpha 1 cDNA. Three mouse monoclonal antibodies directed against either the F region [(Ab9 alpha (F) and Ab12 alpha (F)] or the A1 region [Ab10 alpha 1(A1)] recognized transiently expressed human and mouse RAR-alpha 1 proteins, when either immunocytochemistry or immunoprecipitation was used. In addition, Ab9 alpha (F) and Ab12 alpha (F), but not Ab10 alpha 1(A1), revealed the RAR-alpha 1 proteins by Western blotting analysis. Ab9 alpha (F) was also able to "supershift" RAR-alpha 1 protein-RARE oligonucleotide probe complexes in gel retardation assays. All these antibodies recognized also the transiently expressed mRAR-alpha 2 isoform, with the exception of Ab10 alpha 1 (A1), which is specific for the A1 region of RAR-alpha 1. These antibodies have enabled us to detect the presence of mRAR-alpha as multiple species in mouse embryo and adult tissue extracts as well as in embryonal carcinoma (EC) cells. Moreover, we found that one of these species (51 kDa) was phosphorylated in EC cells. This phosphorylation was not affected by RA treatment, but appeared to be dependent on the differentiation state of the EC cells.  相似文献   

20.
Leucine- and methionine-enkephalins inhibit the Na+-dependent transport of proline into plasma membrane vesicles derived from synaptosomes. Glycine transport is weakly inhibited by enkephalins whereas there is no inhibition of transport of glutamic acid, aspartic acid, or gamma-aminobutyric acid. The inhibition of proline uptake is observed with des-tyrosyl-enkephalins but not with morphine, dynorphin(1-13), or beta-endorphins. Furthermore, enkephalin-induced inhibition of proline transport is not antagonized by naloxone. [Leu]enkephalinamide and modified [Leu]enkephalins with greater selectivity for the delta-subclass of enkephalin binding sites are less effective than [Leu]enkephalin in the inhibition of proline transport. Specific binding of [3H]Leu-enkephalin to the plasma membrane vesicles is demonstrated, and des-Tyr-[Leu]enkephalin competes with Leu-enkephalin for [Leu]enkephalin binding sites. The similarity in the concentrations of des-Tyr-[Leu]enkephalin required to compete for specific [Leu]enkephalin binding and to inhibit proline transport suggests that a specific subclass of enkephalin binding sites, distinguished by their recognition of both the enkephalins and their des-tyrosyl derivatives, may be associated with the synaptic proline transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号