首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
The N-terminal 70-kDa fragment of human plasma fibronectin, purified from a cathepsin D digest, is characterized by lack of stability. It is processed proteolytically during incubation in the presence of Ca2+ into 27-kDa N-terminal heparin-binding and 45-kDa collagen-binding domains. The N-terminal residue in the 27-kDa fragment was blocked as in native fibronectin. The 45-kDa fragments began with the sequences AAVYQP, AVYQP and VYQP (residues 260, 261, 262-265 of fibronectin) that correspond to the beginning of the collagen-binding domain. In the presence of Ca2+ the purified 27-kDa fragment underwent further processing finally leading to the cleavage of the bond K85-D86 and to the simultaneous appearance of a specific proteolytic activity. Inhibition studies suggests that the newly generated enzyme is a Ca(2+)-dependent serine proteinase. Among all assayed matrix proteins, the newly generated enzyme cleaves native fibronectin and its fragments. It is proposed that this fibronectinase may originate from the N-terminal domain of fibronectin.  相似文献   

2.
Human plasma fibronectin (pFN) contains a cryptic metalloprotease present in the collagen-binding domain. The enzyme could be generated and activated in the presence of Ca2+ from the purified 70-kDa pFN fragment produced by cathepsin D digestion. In this work we cloned and expressed the metalloprotease, designated FN type IV collagenase (FnColA), and a truncated variant (FnColB) in E. coli. The recombinant pFN protein fragment was isolated from inclusion bodies, and subjected to folding and autocatalytic degradation in the presence of Ca2+, and yielded an active enzyme capable of digesting gelatin, helical type II and type IV collagen, - and -casein, insulin b-chain, and a synthetic Mca-peptide. In contrast, isolated plasma fibronectin, type I collagen, and the DNP-peptide were no substrates. Both catalytically active recombinant pFN fragments were efficiently inhibited by EDTA, and batimastat, and, in contrast to the glycosylated enzyme isolated from plasma fibronectin, were also inhibited by TIMP-2.  相似文献   

3.
Fibronectin contains two latent gelatinolytic enzymes, FN-gelatinase and FN-laminase that can be activated in the presence of Ca2+ from the purified cathepsin D-produced 190-kDa fibronectin fragment. The results of this work show that Achromobacter collagenase cleaves fibronectin and generates an active FN-gelatinase. In contrast to the cathepsin D digest, the collagenase digest directly exhibits gelatinolytic activity without additional activation. The gelatinolytic activity of the total collagenase digest can be inhibited by phenylmethanesulfonyl fluoride, a serine proteinase inhibitor and by pepstatin A, an aspartic-acid proteinase inhibitor. FN-laminase activity, when assayed with its synthetic substrate GPAGPR and also with laminin was revealed after separation of the collagenase digest of fibronectin on heparin Ultrogel. FN-gelatinase and FN-laminase activities were found in heparin unretained and heparin strongly retained fractions. These results have demonstrated that in contrast to cathepsin D, Achromobacter collagenase activates two matrix-degrading proteinases from fibronectin, FN-Gelatinase und FN-Laminase.  相似文献   

4.
Human plasma fibronectin contains a latent proteinase that after activation cleaves gelatin and fibronectin. The autoactivation propensity of the two purified cathepsin D-produced fragments of fibronectin (190 and 120 kDa) was compared. Both polypeptides were spontaneously activated in the presence of Ca2+. This activation was inhibited by EDTA. The active gelatinase was isolated from the autodigest of the 190-kDa fragment. Among various protein substrates, including laminin and native type I and IV collagens, the purified enzyme degraded only gelatin and fibronectin. We have named this proteinase FN-gelatinase. FN-gelatinase is inhibited by phenylmethanesulfonyl fluoride and also by pepstatin A like retroviral aspartic proteinases. The amino-acid composition of the purified enzyme (35 kDa) was compared with the entire fibronectin sequence using the computer programme FIT. The optimal fit indicated that the 35-kDa fragment corresponds to the stretch # 1043-1404. This sequence contains a 93-residue segment (# 1140-1233) analogous to retroviral aspartic proteinases, comprising the sequence DTG of their putative active site.  相似文献   

5.
The domain structure of human fibronectins isolated from plasma and from the conditioned medium of normal and transformed fibroblasts was analyzed by limited proteolysis and S-cyanylation followed by immunostaining of released fragments with five kinds of antibodies, each specific for one functional domain. The results indicate that all three human fibronectins are composed of the same set of functional domains aligned in the same topological order. However, the following clear differences were found in specific fragments released from plasma fibronectin (pFN) and those released from fibronectin of normal (N-cFN) and transformed fibroblasts (T-cFN). Two fragments (Mr = 70,000 and 60,000) were released from the COOH-terminal region of pFN by cathepsin D. These fragments represent the COOH-terminal heparin-binding (Hep-2) and fibrin-binding (Fib-2) domains. The corresponding fragments released from both N-cFN and T-cFN by cathepsin D had much larger molecular weights (Mr = 100,000 and 83,000-74,000) than those from pFN. The fragments from the Fib-2 domain alone, however, did not show any difference among all three FNs. The internal region, from the gelatin-binding (Gel) domain through the Hep-2 domain, of N-cFN and T-cFN was released as a Mr = 210,000 fragment upon mild trypsin digestion. The corresponding fragment from pFN was released as a Mr = 185,000 fragment. The COOH-terminal half, including the Hep-2 domain, of both N-cFN and T-cFN was released by S-cyanylation as Mr = 160,000-145,000 fragments, which are 25,000-20,000 larger than the corresponding fragments of pFN. These results clearly indicate that the Hep-2 domain of N-cFN and T-cFN is 30,000-20,000 daltons larger than the same domain of pFN. Although various fragments released from N-cFN and T-cFN showed a similar pattern, there were minor differences. Thermolysin fragments derived from the Hep-2 domain of N-cFN were clearly distinguishable from those from T-cFN. Three groups of fragments with Mr = 40,000, 35,000-32,000, and 30,000 were released from N-cFN, while only the 35,000-32,000 fragment was released from T-cFN. The Mr = 44,000/60,000 thermolysin fragments representing the Gel domain and the Mr = 210,000/165,000 tryptic fragments representing the internal domains of T-cFN were slightly, but consistently, larger than those of N-cFN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The purified 190-kDa fibronectin fragment produced by cathepsin D can be spontaneously activated in the presence of CaCl2. This activation generates new proteolytic activities and also results in the formation of several subfragments. One of them exhibits the activity of FN-gelatinase that preferentially splits type I denatured collagen and fibronectin (see preceding paper). In this work we describe the purification and characterization of another fragment (25 kDa), issued from the same autodigest. This fragment may be activated to yield another proteinase, that splits preferentially laminin and denatured collagen type I. This enzyme will be referred as FN-laminase. Purified FN-laminase specifically reacted with antibodies against fibronectin. The specificity of bond cleavage by FN-laminase was studied with various synthetic peptides analogous to collagen repeats. FN-laminase cleaves the Ala-Gly bond in the sequence GPAGPR; the arginine residue in position P3' is important for this cleavage. The enzyme is inhibited by pepstatin A and phenylmethanesulfonyl fluoride, like retroviral aspartic proteinases. It is also inhibited by EDTA. No inhibition was obtained with 1,10-phenanthroline or 4-chloromercuribenzoate, inhibitors of Zn-metalloproteinases or cysteine proteinases, respectively.  相似文献   

7.
Fibronectins isolated from human plasma (pFN) and from the conditioned media of normal (N-cFN) and tumor (T-cFN) human cells were compared by cathepsin D digestion followed by immunostaining of released fragments with the monoclonal antibody 3E3, specific for the cell binding site. Two different staining patterns were obtained, one specific for pFN and N-cFN, the second common to fibronectins from the 3 different kinds of tumors studied. This indicates structural differences between N-cFN and T-cFN in the cell binding region of the fibronectin molecule.  相似文献   

8.
The effects of two spleen proteinases, cathepsin D and thiol proteinase I active in neutral media--on the structural properties of fibronectins from blood plasma on adult animals and their embryos were investigated. Proteinase I and cathepsin D caused rapid fragmentation of all fibronectins under study. Fibronectin from calf embryonic serum was more sensitive to proteinase I than that from adult animal serum. The molecular weight and the correlation between the proteolytic products formed under the influence of each enzyme, on the embryonic and "adult" fibronectins, are very similar but not identical. Similar results were obtained in experiments with proteolytic products of chicken serum and embryo fibronectins. Fragmentation of embryonic fibronectin occurs more rapidly than that of chicken fibronectin; the fibronectin proteolytic products differ both qualitatively and quantitatively. However, the determination of structural differences between these fibronectins is considerably hampered by the presence of protein contaminations in chicken fibronectin preparations.  相似文献   

9.
The family of aspartic proteinases includes several human enzymes that may play roles in both physiological and pathophysiological processes. The human lysosomal aspartic proteinase cathepsin D is thought to function in the normal degradation of intracellular and endocytosed proteins but has also emerged as a prognostic indicator of breast tumor invasiveness. Presented here are results from a continuing effort to elucidate the factors that contribute to specificity of ligand binding at individual subsites within the cathepsin D active site. The synthetic peptide Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu has proven to be an excellent chromogenic substrate for cathepsin D yielding a value of kcat/Km = 0.92 x 10(-6) s-1 M-1 for enzyme isolated from human placenta. In contrast, the peptide Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu and all derivatives with Ala-Lys in the P3-P2 positions are either not cleaved at all or cleaved with extremely poor efficiency. To explore the binding requirements of the S3 and S2 subsites of cathepsin D, a series of synthetic peptides was prepared with systematic replacements at the P2 position fixing either Ile or Ala in P3. Kinetic parameters were determined using both human placenta cathepsin D and recombinant human fibroblast cathepsin D expressed in Escherichia coli. A rule-based structural model of human cathepsin D, constructed on the basis of known three-dimensional structures of other aspartic proteinases, was utilized in an effort to rationalize the observed substrate selectivity.  相似文献   

10.
Alveolar macrophages are thought to play an important role in ongoing tissue breakdown and repair processes in the normal lung. The secretion and regulation of cathepsin D (important for the final breakdown of collagen) and fibronectin (involved in the healing process) in human peripheral blood monocytes (PBM) and pulmonary alveolar macrophages (PAM) were investigated. Cathepsin D enzyme activity was measured by quantitating the TCA-soluble fragments of [3H]hemoglobin. Freshly isolated PBM contained less cell-associated cathepsin D activity than did freshly isolated PAM (314 +/- 35 micrograms/10(6) cells vs 381 +/- 35 micrograms/10(6) cells, respectively). After 7-10 days in culture, cell-associated enzyme levels in both PBM and PAM were significantly increased (P less than 0.001 for PBM; P less than 0.0001 for PAM). In addition, freshly isolated PAM secreted more cathepsin D than did freshly isolated PBM (5.8 +/- 3.2 micrograms/10(6) cells vs 0.83 +/- 0.83 micrograms/10(6) cells, P less than 0.02). In the presence of LPS (10 micrograms/ml), cell-associated cathepsin D was inhibited in both PBM and PAM. With the addition of gamma-IFN (500 U/ml), both cell-associated and secreted enzyme were increased in freshly isolated and 10-day-cultured PBM and PAM. In parallel studies, fibronectin secretion (by ELISA assay) in both PBM and PAM increased over time in culture. LPS had no effect on PBM or PAM secretion of human fibronectin while gamma-IFN increased PBM and PAM fibronectin levels. Thus, both macrophage cathepsin D activity and fibronectin secretion are increased by gamma-interferon while macrophage cathepsin D activity, but not fibronectin secretion, is decreased by LPS. These studies demonstrate that human macrophage cathepsin D activity is actively modulated by inflammatory mediators and that macrophage mediators of tissue breakdown and repair are not modulated synchronously.  相似文献   

11.
Cysteine proteinases play a major role in invasion and intracellular survival of a number of pathogenic parasites. We cloned a single copy gene, tgcp1, from Toxoplasma gondii and refolded recombinant enzyme to yield active proteinase. Substrate specificity of the enzyme and homology modeling identified the proteinase as a cathepsin B. Specific cysteine proteinase inhibitors interrupted invasion by tachyzoites. The T. gondii cathepsin B localized to rhoptries, secretory organelles required for parasite invasion into cells. Processing of the pro-rhoptry protein 2 to mature rhoptry proteins was delayed by incubation of extracellular parasites with a cathepsin B inhibitor prior to pulse-chase immunoprecipitation. Delivery of cathepsin B to mature rhoptries was impaired in organisms with disruptions in rhoptry formation by expression of a dominant negative micro1-adaptin. Similar disruption of rhoptry formation was observed when infected fibroblasts were treated with a specific inhibitor of cathepsin B, generating small and poorly developed rhoptries. This first evidence for localization of a cysteine proteinase to the unusual rhoptry secretory organelle of an apicomplexan parasite suggests that the rhoptries may be a prototype of a lysosome-related organelle and provides a critical link between cysteine proteinases and parasite invasion for this class of organism.  相似文献   

12.
Two types of acid proteases, cathepsin D and cathepsin E-like enzyme, from rat gastric mucosa and spleen were compared in their biochemical and immunochemical properties. The enzymes were partially purified by employing the same chromatographic procedures and they showed a single proteolytically active band in polyacrylamide gel electrophoresis. Two low molecular weight enzymes, cathepsins D, from both tissues showed the same molecular weight and the same sensitivities to various inhibitors, but slightly different electrophoretic mobilities. The rabbit antiserum raised against gastric mucosa cathepsin D precipitated both enzymes. On the other hand, high molecular weight enzymes, gastric mucosa cathepsin D-like acid proteinase and spleen cathepsin E-like acid proteinase, were similar to each other as judged by their chromatographic profiles, electrophoretic mobilities, and high stabilities in urea solution. Furthermore, the antiserum specific to gastric mucosa cathepsin D-like acid proteinase inhibited both enzyme activities in a similar manner. However, the antiserum specific to one type of enzyme did not react with the other type. These results indicate that: gastric mucosa cathepsin D is immunologically identical with spleen cathepsin D; gastric mucosa cathepsin D-like acid proteinase has biochemical and immunological properties quite similar to spleen cathepsin E-like enzyme; these two types of acid proteases are quite different proteins existing in the individual tissues.  相似文献   

13.
Regulation of the fibronectin receptor affinity by divalent cations   总被引:38,自引:0,他引:38  
The cell surface receptor for fibronectin is a heterodimeric membrane protein that recognizes an Arg-Gly-Asp sequence in fibronectin and that requires cations such as Mg2+ or Ca2+ for binding to fibronectin. The divalent cation requirements of this receptor were analyzed by measuring attachment of receptor liposomes to ligand-coated surfaces in the presence of different cations. The most striking effect observed was produced by Mn2+, which increased the binding of the receptor liposomes to fibronectin 2-3-fold over their binding in buffers containing Ca2+ and Mg2+. The binding activities of two related adhesion receptors, the vitronectin receptor and platelet GP IIb-IIIa, were supported but not enhanced by Mn2+. Two observations suggest that Mn2+ can compete with Ca2+ for the same cation-binding sites of the receptor. First, Mn2+ could still enhance fibronectin receptor binding activity even in the presence of 10-fold higher concentrations of Ca2+ or Mg2+. Second, Mn2+ inhibited the binding of radioactive Ca2+ to the alpha subunit of the receptor. The increased fibronectin receptor activity in the presence of Mn2+ appeared to be due to an increase in the affinity of the receptor for the Arg-Gly-Asp sequence because a 110-kDa cell attachment fragment and a synthetic hexapeptide containing the Arg-Gly-Asp sequence inhibited liposome binding more effectively in the presence of Mn2+ than in the presence of Ca2+/Mg2+. The affinity for the peptide was affected more than the affinity for the fragment, indicating that Mn2+ also induces a change in receptor specificity. Increased receptor binding in the presence of Mn2+ was also apparent in affinity chromatography of the fibronectin receptor on the 110-kDa fibronectin fragment; Mn2+ improved the yield of the receptor 4-fold. Mn2+ similarly increased the number of receptor-fibronectin complexes in preparations analyzed by electron microscopy. These results show that exogenous influences can modulate the affinity and specificity with which the fibronectin receptor binds to its ligands.  相似文献   

14.
The interaction of a variety of aspartic proteinases with a recombinant tomato protein produced in Pichia pastoris was investigated. Only human cathepsin D and, even more potently, proteinase A from Saccharomyces cerevisiae were inhibited. The tomato polypeptide has >80% sequence identity to a previously reported potato inhibitor of cathepsin D. Re-evaluation of the potato inhibitor revealed that it too was more potent (>20-fold) towards yeast proteinase A than cathepsin D and so might be renamed the potato inhibitor of proteinase A. The potency towards yeast proteinase A may reflect a similarity between this fungal enzyme and aspartic proteinases produced by fungal pathogens which attack tomato and/or potatoes.  相似文献   

15.
Dermatan sulfate proteoglycans (DS-PGs) isolated from bovine articular cartilage have been examined for their effects on the adhesive responses of BALB/c 3T3 cells and bovine dermal fibroblasts on plasma fibronectin (pFN) and/or type I collagen matrices, and compared to the effects of the chondroitin sulfate/keratan sulfate proteoglycan monomers (CS/KS-PGs) from cartilage. DS-PGs inhibited the attachment and spreading of 3T3 cells on pFN-coated tissue culture substrata much more effectively than the cartilage CS/KS-PGs reported previously; in contrast, dermal fibroblasts were much less sensitive to either proteoglycan class unless they were pretreated with cycloheximide. Both cell types failed to adhere to substrata coated only with the proteoglycans; binding of the proteoglycans to various substrata has also been quantitated. While a strong inhibitory effect was obtained with the native intact DS-PGs, little inhibitory effect was obtained with isolated DS chains (liberated by alkaline-borohydride cleavage) or with core protein preparations (liberated by chondroitinase ABC digestion). In marked contrast, DS-PGs did not inhibit attachment or spreading responses of either 3T3 or dermal fibroblasts on type I collagen-coated substrata when the collagen was absorbed with pFN alone, DS-PGs alone, or the two in combination. These results support evidence for (a) collagen-dependent, fibronectin-independent mechanisms of adhesion of fibroblasts, and (b) different sites on the collagen fibrils where DS-PGs bind and where cell surface "receptors" for collagen bind. Experiments were developed to determine the mechanism(s) of inhibition. All evidence indicated that the mechanism using the intact pFN molecule involved the binding of the DS-PGs to the glycosaminoglycan (GAG)-binding sites of substratum-bound pFN, thereby inhibiting the interaction of the fibronectin with receptors on the cell surface. This was supported by affinity chromatography studies demonstrating that DS-PGs bind completely and effectively to pFN-Sepharose columns whereas only a subset of the cartilage CS/KS-PG binds weakly to these columns. In contrast, when a 120-kD chymotrypsin-generated cell-binding fragment of pFN (CBF which has no detectable GAG-binding activity as a soluble ligand) was tested in adhesion assays, DS-PGs inhibited 3T3 adherence on CBF more effectively than on intact pFN. A variety of experiments indicated that the mechanism of this inhibition also involved the binding of DS-PGs to only substratum-bound CBF due to the presence of a cryptic GAG-binding domain not observed in the soluble CBF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Golgi-membrane-bound Gal beta 1-4GlcNAc alpha 2-6-sialyltransferase (CMP-N-acetylneuraminate:beta-galactoside alpha 2-6-sialyltransferase, EC 2.4.99.1) behaves as an acute-phase reactant increasing about 5-fold in serum in rats suffering from inflammation. The mechanism of release from the Golgi membrane is not understood. In the present study it was found that sialyltransferase could be released from the membrane by treatment with ultrasonic vibration (sonication) followed by incubation at reduced pH. Maximum release occurred at pH 5.6, and membranes from inflamed rats released more enzyme than did membranes from controls. Galactosyltransferase (UDP-galactose:N-acetylglucosamine galactosyltransferase; EC 2.4.1.38), another Golgi-located enzyme, which does not behave as an acute-phase reactant, remained bound to the membranes under the same conditions. Release of the alpha 2-6-sialyltransferase from Golgi membranes was substantially inhibited by pepstatin A, a potent inhibitor of cathepsin D-like proteinases. Inhibition of release of the sialyltransferase also occurred after preincubation of sonicated Golgi membranes with antiserum raised against rat liver lysosomal cathepsin D. Addition of bovine spleen cathepsin D to incubation mixtures of sonicated Golgi membranes caused enhanced release of the sialyltransferase. Intact Golgi membranes were incubated at lowered pH in presence of pepstatin A to inhibit any proteinase activity at the cytosolic face; subsequent sonication showed that the sialyltransferase had been released, suggesting that the proteinase was active at the luminal face of the Golgi. Golgi membranes contained a low level of cathepsin D activity (EC 3.4.23.5); the enzyme was mainly membrane-bound, since it could only be released by extraction with Triton X-100 or incubation of sonicated Golgi membranes with 5 mM-mannose 6-phosphate. Immunoblot analysis showed that the transferase released from sonicated Golgi membranes at lowered pH had an apparent Mr of about 42,000 compared with one of about 49,000 for the membrane-bound enzyme. Values of Km for the bound and released enzyme activities were comparable and were similar to values reported previously for liver and serum enzymes. The work suggests that a major portion of sialyltransferase containing the catalytic site is released from a membrane anchor by a cathepsin D-like proteinase located at the luminal face of the Golgi and that this explains the acute-phase behaviour of this enzyme.  相似文献   

17.
Effect of exercise on synthesis and degradation of muscle protein.   总被引:8,自引:4,他引:4       下载免费PDF全文
Several reports have shown that amino acid utilization via oxidation and gluconeogenesis is increased during exercise. The purpose of this study was to investigate whether these changes are accompanied by alterations in protein synthesis and degradation in the muscle of exercising rats. One group of rats was made in swim for 1h and then protein synthesis and protein degradation were measured in a perfused hemicorpus preparation. Protein synthesis was decreased and protein degradation was increased in exercised rats compared with sedentary control rats. Exercise also decreased amino acid incorporation by isolated polyribosomes from muscle. Measurement of several muscle proteinase activities demonstrated that exercise had no effect on alkaline proteinase or Ca2+-activated proteinase. However, the free (unbound) cathepsin D activity was elevated in muscle of exercised rats, whereas the total activity of catepsin D was unchanged. This increase in the proportion of free cathepsin D activity suggests that lysosomal enzymes may be involved in the increased protein degradation that was observed.  相似文献   

18.
A cDNA clone encoding a cysteine proteinase of the papain superfamily has been isolated from the hepatopancreas of northern shrimp Pandalus borealis (NsCys). NsCys shares the highest identity of 64% with a cathepsin L-like cysteine proteinase from lobster, and its identity to the well-characterized mammalian cathepsins S, L, and K falls within a narrow range of 54-59%. However, it differs from each of these cathepsins in certain key residues including, for example, the unique occurrence of tryptophan and cysteine residues at the structurally important S2 subsite. Consequently, NsCys produced in Pichia pastoris appears to be distinct in various physicokinetic properties. The recombinant enzyme is active and stable over a wide range of pH values, and its substrate specificity is unusual, as demonstrated by its poor affinity for phenylalanine residues. Instead, it shows the highest specificity for proline residues, a property similar to cathepsin K. Unlike cathepsin K, however, NsCys cleaves valine residues more efficiently than leucine. Similar results were obtained with the natural peptide substrate glucagon. The shrimp proteinase is further distinguished by its potent collagenolytic activity, resulting in a cleavage pattern reminiscent of bacterial collagenase. To distinguish such unique structural and enzymatic properties, we propose the trivial name "crustapain" for the shrimp proteinase, indicating that it is a papain-like cysteine proteinase from a crustacean species.  相似文献   

19.
The receptor for fibronectin is a member of the integrin superfamily of cell surface adhesion receptors, many of which recognize the sequence RGD in their ligands. We have developed sensitive enzyme-linked and radioreceptor assays to examine the ligand specificity of the fibronectin receptor. The fibronectin receptor bound only to fibronectin of the various Arg-Gly-Asp (RGD)-containing proteins tested. The smallest amount of receptor detectable in the assay was about 10 ng. Mn2+ enhanced the binding of the receptor to fibronectin 3-10-fold as compared to Ca2+ and Mg2+. Scatchard analysis of the saturation plot from the radioreceptor assay gave a dissociation constant (Kd) of 3 x 10(-8) M for the binding of fibronectin receptor to fibronectin in the presence of Mn2+. Inhibition experiments showed that the affinities of the ligands for the receptor decreased in the order of fibronectin approximately 110-kDa fibronectin fragment greater than GRGDSP peptide greater than 11.5-kDa fragment. Peptides not containing an RGD were several hundred to several thousand-fold less inhibitory than GRGDSP. These included the closely related peptides GRADSP and GRGESP, as well as three peptides containing the reverse sequence DGR. A peptide from the fibrinogen gamma-chain, KQAGDV, which had about 0.5% of the inhibitory activity of the standard GRGDSP peptide, was the most active peptide not containing an RGD. These results document the exquisite specificity of the fibronectin receptor for the RGD sequence.  相似文献   

20.
Cleavage of the 45-kDa gelatin-binding fragment of human plasma fibronectin with fibronectinase resulted in the activation of two forms of metalloproteinase with different substrate specificities. The 40-kDa FN-type-IV collagenase A degrades heat-denatured type-I collagen, laminin and also native collagen type IV. The 27-kDa FN-type-IV collagenase B degrades native collagen type IV, but it does not cleave laminin and only poorly degrades gelatin. Both enzymes begin with the same N-terminal sequence VYQPQPH- (residues 262-268 of fibronectin) but, contrary to the FN-type-IV collagenase A, the FN-type-IV collagenase B has lost the C-terminal region of type I repeats, where the major gelatin-binding determinants of fibronectin are located. The FN-type-IV collagenases A and B are sequentially similar to the middle domain (domain II) of collagenase type IV, secreted by H-ras-transformed human bronchial epithelial cells. Substrate and inhibition specificity of FN-type-IV collagenase A and B are different from those of FN-gelatinase and FN-laminase, isolated previously from the central and C-terminal fibronectin domains, respectively. The substrate specificity of both enzymes, characterized in this study, is also different from that of already known matrix-degrading metalloproteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号