首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Bacillus licheniformis M27 produced 21, 000 units of alpha-amylase/g dry bacterial bran under solid state fermentation in wheat bran medium enriched with 3.3% di-ammonium hydrogen phosphate. The crude enzyme, with temperature optimum at 90°C in 0.5% starch solution, showed pH optima at 6.5–7.0 and 9.5 and over 75% activity over the pH range 6.0–10.5.  相似文献   

2.
Summary The ratio of buffer to wheat bran, incubation temperature and initial pH influence -amylase production byBacillus megaterium 16M under solid state fermentation. The enzyme, with pH and temperature optima at 6.0 and 70°C, is formed at a level of 30,000 units/g dry bacterial bran without coproduction of proteases and cellulases.  相似文献   

3.
Glucoamylase production by a thermophilic mold Thermomucor indicae-seudaticae was optimized in solid-state fermentation (SSF) by conventional one variable at a time approach and further statistically using response surface methodology (RSM). Glucoamylase secretion was strongly affected by three variables (moisture ratio, inoculum level and incubation time), and therefore, these three factors were further optimized using response surface methodology. The glucoamylase production in flasks containing wheat bran, under the conditions optimized by RSM, was 455 ± 23 U/g of dry moldy bran (DMB), while the predicted value by a polynomial model was 433.30 U/g DMB. The enzyme titre (455 ± 23 U/g DMB) attained in the validation experiment of this investigation is higher than those reported in the literature. When the large-scale production was attempted in enamel trays, a marginally lower enzyme titres were attained. An overall 1.8-fold increase in glucoamylase production was achieved in SSF due to statistical optimization in comparison with that of one variable at a time approach (250 ± 13 U/g DMB). A 10-fold enhancement in glucoamylase production was recorded in SSF as compared to that in submerged fermentation.  相似文献   

4.
An obligatory alkalophilic Bacillus sp. P-2, which produced a thermostable alkaline protease was isolated by selective screening from water samples. Protease production at 30 °C in static conditions was highest (66 U/ml) when glucose (1% w/v) was used with combination of yeast extract and peptone (0.25% w/v, each), in the basal medium. Protease production by Bacillus sp. P-2 was suppressed up to 90% when inorganic nitrogen sources were supplemented in the production medium. Among the various agro-byproducts used in different growth systems (solid state, submerged fermentation and biphasic system), wheat bran was found to be the best in terms of maximum enhancement of protease yield as compared to rice bran and sunflower seed cake. The protease was optimally active at pH 9.6, retaining more than 80% of its activity in the pH range of 7–10. The optimum temperature for maximum protease activity was 90 °C. The enzyme was stable at 90 °C for more than 1h and retained 95 and 37% of its activity at 99 °C and 121 °C, respectively, after 1 h. The half-life of protease at 121 °C was 47 min.  相似文献   

5.
Production of protease-resistant phytase by Aspergillus oryzae SBS50 was optimized in solid state fermentation using wheat bran as substrate. An integrated statistical optimization approach involving the Placket–Burman design followed by response surface methodology was employed. Among all the variables tested, incubation period, triton X-100, moisture ratio, and magnesium sulphate were identified as significant and further optimized using response surface methodology that resulted in 3.35-fold improvement in phytase production from 55.43 to 185.75 U/g dry mouldy bran (DMB). Optimal conditions for maximum phytase production (185.75 U/g DMB) included wheat bran 10 g per 250 ml flask moistened with 35 ml distilled water supplemented with 3.0% triton X-100, 0.04% magnesium sulphate, 1.0% sucrose and 0.5% yeast extract incubated at 30?°C for an incubation time of 48 h. Phytase titers were sustainable (179.55 to 185.75 U/g DMB), when the mould was grown in shake flasks of varied volumes and enamel-coated metallic trays under optimized conditions. Fermentation time was reduced to half from 96 h to 48 h after optimization resulting in a 6.7-fold enhancement in the phytase productivity from 577.39 to 3868.75 U/Kg/h and thus, reducing the cost of enzyme production. Phytase released inorganic phosphate, reducing sugars and soluble proteins from different food samples in a time dependent manner as a result of phytate hydrolysis.  相似文献   

6.
The thermotolerant fungus, Aspergillus niger NCIM 563, was used for production of extracellular phytase on agricultural residues: wheat bran, mustard cake, cowpea meal, groundnut cake, coconut cake, cotton cake and black bean flour in solid state fermentation (SSF). Maximum enzyme activity (108 U g−1 dry mouldy bran, DMB) was obtained with cowpea meal. During the fermentation phytic acid was hydrolysed completely with a corresponding increase in biomass and phytase activity within 7 days. Phosphate in the form of KH2PO4 (10 mg per 100 g of agriculture residue) increased phytase activity. Among various surfactants added to SSF, Trition X-100 (0.5%) exhibited a 30% increase in phytase activity. The optimum pH and temperature of the crude enzyme were 5.0 and 50°C respectively. Phytase activity (86%) was retained in buffer of pH 3.5 for 24 h. The enzyme retained 75% of its activity on incubation at 55°C for 1 h. In the presence of 1 mM K+ and Zn2+, 95% and 55% of the activity were retained. Scanning electron microscopy showed a high density growth of fungal mycelia on wheat bran particles during SSF. Journal of Industrial Microbiology & Biotechnology (2000) 24, 237–243. Received 07 June 1999/ Accepted in revised form 18 December 1999  相似文献   

7.
Summary A strain ofFusarium moniliforme, previously used for microbial protein production, excreted lactase (-D-galactosidase, EC.3.2.1 23) when cultivated either in a whey liquid medium or on a wheat bran solid medium. The enzyme produced in both media had pH and temperature optima of 4–5 and 50–60°C respectively and was particularly suitable for processing acid whey.In the whey culture, maximum lactase yield was observed after 95 h of growth at 30°C and whey lactose concentration of 9%. The addition of ammonium, potassium and sodium ions to the growth medium considerably enhanced lactase production. A maximum enzyme yield corresponding to hydrolysis of 3 nmoles o-nitrophenyl--D-galactopyranoside sec–1 ml–1 of growth medium, at pH 5 and 60°C, was obtained.In the wheat bran culture, the maximum enzyme yield was obtained after 140 h of growth at 28–30°C. A marked increase in the enzyme production was observed when nitrate or phosphate was added to the growth medium. Also, the addition of certain agricultural by-products (molasses, whey) enhanced lactase production. The observed maximum yield corresponding to the hydrolysis of 182 nmoles of ONPG sec–1 g–1 of wheat bran, at pH 5 and 60°C, is comparable to that reported for certain microorganisms used commercially for lactase production.  相似文献   

8.
Summary The production of cellulase and xylanase was investigated with a newly isolated strain of Trichoderma viride BT 2169. The medium composition was optimized on a shake-flask scale using the Graeco-Latin square technique. The temperature and time for optimal growth and production of the enzymes in shake cultures were optimized using a central composite design. The temperature optima for maximal production of filter paper cellulase (FPase), xylanase and -gluosidase were 32.8°, 34.7° and 31.1° C, respectively, and the optimum times for production of these enzymes were found to be 144, 158 and 170 h, respectively. The optimized culture medium and conditions (33° C) gave 0.55 unit of FPase, 188.1 units of xylanase and 3.37 units of -glucosidase per milliliter of culture filtrate at 144 h of shake culture. Among different carbon sources tested, the maximum enzyme activities were produced with sulphite pulp and all three enzymes were produced irrespective of the carbon sources used. Batch fermentation in a laboratory fermentor using 2% sulphite pulp allowed the production of 0.61 unit of FPase, 145.0 units of xylanase and 2.72 units of -glucosidase. In a fed-batch fermentation on 6% final Avicel concentration FPase and -glucosidase were 3.0 and 2.4 times higher respectively than those in batch fermentation on 2% Avicel. The pH and temperature optima as well as pH and temperature stabilities of T. viride enzymes were found to be comparable to T. reesei and some other fungal enzymes.  相似文献   

9.
Some parameters of the production of an alkaline protease by Rhizopus oryzae in the solid state fermentation of wheat bran were optimized. Using the optimum parameters of an inoculum age of 7 days, an incubation time of 9 days, an amount of CZAPEK ‐DOX (liquid medium) of 6 ml/g bran and an incubation temperature of 33°C, an activity of 50 U/g bran was achieved. The initial pH of the CZAPEK ‐DOX medium had little effect. Re‐incubation of mouldy bran with only fresh CZAPEK ‐DOX yielded 3 times total activity compared to single‐cycle fermentation. As for the effect of the amount CZAPEK ‐DOX medium, the water constituent contributed more to activity increase than did the salt component. The ARRHENIUS activation energies were 23 and 7.9 kcal/mole below and above the optimum of 33°C, respectively. In all the studies, along with protease production, variation of protein content and specific activity were also observed. Attempts were made to explain the effects and also gauge their implications for large‐scale production.  相似文献   

10.
Abstract

Production of alkaline α‐amylase employing our laboratory isolate, Bacillus sp., under solid state fermentation, was optimized. The effect of wheat bran and lentil husk was examined. Lentil husk exhibited the highest enzyme production. The appropriate incubation time, inoculum size, moisture level, and buffer solution level were determined. Maximum yields of 216,000 and 172,800 U/g were achieved by employing lentil husk and wheat bran as substrates in 0.1 M carbonate/bicarbonate buffer at pH 10.0 with 30% initial moisture level at 24 h. Inoculum size and buffer solution level were found to be 20% and 1:0.5 for two solid substrates.  相似文献   

11.
ABacillus sp (V1-4) was isolated from hardwood kraft pulp. It was capable of growing in diluted kraft black liquor at pH 11.5 and produced 49 IU (mol xylose min–1 ml–1) of xylanase when cultivated in alkaline medium at pH 9. Maximal enzyme activity was obtained by cultivation in a defined alkaline medium with 2% birchwood xylan and 1% corn steep liquor at pH 9, but high enzyme production was also obtained on wheat bran. The apparent pH optimum of the enzyme varied with the pH used for cultivation and the buffer system employed for enzyme assay. With cultivation at pH 10 and assays performed in glycine buffer, maximal activity was observed at pH 8.5; with phosphate buffer, maximal activity was between pH 6 and 7. The xylanase temperature optimum (at pH 7.0) was 55°C. In the absence of substrate, at pH 9.0, the enzyme was stable at 50°C for at least 30 min. Elecrophoretic analysis of the crude preparation showed one predominant xylanase with an alkaline pl. Biobleaching studies showed that the enzyme would brighten both hardwood and softwood kraft pulp and release chromophores at pH 7 and 9. Because kraft pulps are alkaline, this enzyme could be used for prebleaching with minimal pH adjustment.  相似文献   

12.
Abstract

The current study evaluated the production and characterization of β-glucosidase by the thermophilic fungus Thermomucor indicae-seudaticae in solid-state fermentation of wheat bran. Isolated fungi have significant amounts of β-glucosidase, an enzyme that may be applied to different industrial processes, such as the production of fuels, food, and other chemical compounds. Maximal enzyme activity occurred in pH 3.5–4.5 and at 70?°C. The enzyme exhibited high thermostability, for 1?h, up to 60?°C, and good tolerance to glucose (10?mM) and ethanol (10%). The optimization of fermentative parameters on the production of β-glucosidase was carried out by evaluating the best supplementary nutrient source, pH of nutrient solution, initial substrate moisture and fermentation temperature. The optimization of the above fermentation parameters increased enzyme activity by 120.0%. The highest enzymatic activity (164.0?U/g) occurred with wheat bran containing 70% initial moisture, supplemented with 1.0% (NH4)2SO4 solution at pH 5.5–6.0 and fungus incubated at 40?°C. A more detailed study of β-glucosidase suggested that Sulfur is an important component of the main amino acid present in this enzyme. The enhancer of the enzyme activity occurred when the fungus was grown on wheat bran supplemented with a sulfur-containing solution. In fact, increasing the concentration of sulfur in the solution increased its activity.  相似文献   

13.
An attempt was made to find out the optimum aeration and agitation rates on the production of bacterial rennet from Bacillus sublilis K-26 using 5% wheat bran medium in a 13 liter fermentor. The enzyme activity and the growth rate were shown to increase with an increase in the rate of agitation. The fermentation experiments carried out at an agitation rate of 400 rpm showed an approximate threefold increase in enzyme activity with a considerable decrease in the fermentation time over those agitated at 200 and 300 rpm. The beneficial effect of a higher oxygen rate was observed for enzyme production occurring at a lower agitation rate. The inoculum activity and the varying amounts of antifoam agent which were added showed no apparent effect either on the total incubation time or on the final enzyme activity. It has been suggested that an agitation rate of 400 rpm with an aeration level of 3000 cc/min are the optimum values for the efficient production of bacterial rennet from B. subtilis K-26 using 5% wheat bran medium in a 13 liter fermentor.  相似文献   

14.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

15.
Production of tannase by solid-state fermentation   总被引:2,自引:0,他引:2  
An attempt has been made to optimize the production of enzyme tannase by solid state fermentation (SSF) using the organism Rhizopus oryzae. The best favourable conditions for enzyme production include initial pH 5 with 4 days of incubation period at 40°C and 72% humidity, and 10 g wheat bran soaked in 2.5% tannic acid.  相似文献   

16.
Phytase production by Aspergillus niger NCIM 563 was optimized by using wheat bran in solid state fermentation (SSF). An integrated statistical optimization approach involving the combination of Placket–Burman design (PBD) and Box–Behnken design (BBD) was employed. PBD was used to evaluate the effect of 11 variables related to phytase production, and five statistically significant variables, namely, glucose, dextrin, NaNO3, distilled water, and MgSO4·7H2O, were selected for further optimization studies. The levels of five variables for maximum phytase production were determined by a BBD. Phytase production improved from 50 IU/g dry moldy bran (DMB) to 154 IU/g DMB indicating 3.08-fold increase after optimization. A simultaneous reduction in fermentation time from 7 to 4 days shows a high productivity of 38,500 IU/kg/day. Scaling up the process in trays gave reproducible phytase production overcoming industrial constraints of practicability and economics. The culture extract also had 133.2, 41.58, and 310.34 IU/g DMB of xylanase, cellulase, and amylase activities, respectively. The partially purified phytase was optimally active at 55°C and pH 6.0. The enzyme retained ca. 75% activity over a wide pH range 2.0–9.5. It also released more inorganic phosphorus from soybean meal in a broad pH range from 2.5 to 6.5 under emulated gastric conditions. Molecular weight of phytase on Sephacryl S-200 was approximately 87 kDa. The K m and V max observed were 0.156 mM and 220 μm/min/mg. The SSF phytase from A. niger NCIM 563 offers an economical production capability and its wide pH stability shows its suitability for use in poultry feed.  相似文献   

17.
Production of extracellular alkaline protease by a locally isolated fungal species, Rhizopus oryzae, under solid state fermentation was optimized. The maximum enzyme activity under the optimum conditions of temperature (32?°C), relative humidity (90%–95%), spore count (~2?×?105/g wheat bran), moisture content of solid substrate (140%) adjusted suitably with salt solution (M-9) of pH?5.5 was 341 unit/g wheat bran.  相似文献   

18.
Growth and lignocellulolytic enzymes production by two Morchella esculenta strains (BAFC 1728 and BEL 124) growing in solid state fermentation using different lignocellulosic materials along 58 days was characterized. Both strains were able to grow on the three substrates: wheat bran, wheat bran plus corn starch, and rolled oat. The growth was characterized by measuring chitin content, reducing sugars, pH, dry weight loss, and extractable proteins, such parameters varied substantially with substrate and strain used. The maximum rate of growth in both strains was observed between 5 and 28 days. Regarding enzyme production, as a general trend strain BAFC 1728 produced the highest titres. The most evident difference was observed in laccase production by this strain on wheat bran, which exceeded that observed in strain BEL 124 by tenfold (7.45 U g−1).  相似文献   

19.
Production of alkaline alpha-amylase employing our laboratory isolate, Bacillus sp., under solid state fermentation, was optimized. The effect of wheat bran and lentil husk was examined. Lentil husk exhibited the highest enzyme production. The appropriate incubation time, inoculum size, moisture level, and buffer solution level were determined. Maximum yields of 216,000 and 172,800 U/g were achieved by employing lentil husk and wheat bran as substrates in 0.1 M carbonate/bicarbonate buffer at pH 10.0 with 30% initial moisture level at 24 h. Inoculum size and buffer solution level were found to be 20% and 1:0.5 for two solid substrates.  相似文献   

20.
Fructosyl transferase (FTase) production by Aspergillus oryzae CFR 202 was carried out by solid-state fermentation (SSF), using various agricultural by-products like cereal bran, corn products, sugarcane bagasse,cassava bagasse (tippi) and by-products of coffee and tea processing. The FTase produced was used for the production of fructo-oligosaccharides (FOS), using 60% sucrose as substrate. Among the cereal bran used, rice bran and wheat bran were good substrates for FTase production by A. oryzae CFR 202. Among the various corn products used, corn germ supported maximum FTase production, whereas among the by-products of coffee and tea processing used, spent coffee and spent tea were good substrates, with supplementation of yeast extract and complete synthetic media. FTase had maximum activity at 60°C and pH 6.0. FTase was stable up to 40°C and in the pH range 5.0–7.0. Maximum FOS production was obtained with FTase after 8 h of reaction with 60% sucrose. FTase produced by SSF using wheat bran was purified 107-fold by ammonium sulphate precipitation (30–80%), DEAE cellulose chromatography and Sephadex G-200 chromatography. The molecular mass of the purified FTase was 116.3 kDa by SDS-PAGE. This study indicates the potential for the use of agricultural by-products for the efficient production of FTase enzyme by A. oryzae CFR 202 in SSF, thereby resulting in value addition of those by-products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号