首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Yersinia enterocolitica inject toxic proteins (effector Yops) into the cytosol of eukaryotic cells by a mechanism requiring the type III machinery. Previous work mapped a signal sufficient for the targeting of fused reporter proteins to amino acids 1-100 of YopE. Targeting requires the binding of SycE to YopE residues 15-100 in the bacterial cytoplasm. We asked whether SycE functions only to stabilize YopE in the bacterial cytoplasm, or whether the secretion chaperone itself contributes to substrate recognition by the type III machinery. Fusions of glutathione S-transferase to either the N or C terminus of SycE resulted in hybrid proteins that bound YopE but prevented targeting of the export substrate into HeLa cells. As compared with wild-type SycE, glutathione S-transferase-SycE bound and stabilized YopE in the bacterial cytoplasm but failed to release the polypeptide for export by the type III machinery. Thus, it appears that SycE functions to deliver YopE to the type III secretion machinery. A model is presented that accounts for substrate recognition of effector Yops, a group of proteins that do not share amino acid sequence or physical similarities.  相似文献   

2.
Yersinia spp. inject virulence proteins called Yops into the cytosol of target eukaryotic cells in an effort to evade phagocytic killing via a dedicated protein-sorting pathway termed type III secretion. Previous studies have proposed that, unlike other protein translocation mechanisms, Yops are not recognized as substrates for secretion via a solely proteinaceous signal. Rather, at least some of this information may be encoded within yop mRNA. Herein, we report that the first seven codons of yopE, when fused to the reporter protein neomycin phosphotransferase (Npt), are sufficient for the secretion of YopE1-7-Npt when type III secretion is induced in vitro. Systematic mutagenesis of yopE codons 1 to 7 reveals that, like yopQ, codons 2, 3, 5, and 7 are sensitive to mutagenesis, thereby defining the first empirical similarity between the secretion signals of two type III secreted substrates. Like that of yopQ, the secretion signal of yopE exhibits a bipartite nature. This is manifested by the ability of codons 8 to 15 to suppress point mutations in the minimal secretion signal that change the amino acid specificities of particular codons or that induce alterations in the reading frame. Further, we have identified a single nucleotide position in codon 3 that, when mutated, conserves the predicted amino acid sequence of the YopE1-7-Npt but abrogates secretion of the reporter protein. When introduced into the context of the full-length yopE gene, the single-nucleotide mutation reduces the type III injection of YopE into HeLa cells, even though the predicted amino acid sequence remains the same. Thus, yopE mRNA appears to encode a property that mediates the type III injection of YopE.  相似文献   

3.
Customized secretion chaperones in pathogenic bacteria   总被引:34,自引:13,他引:21  
Pathogenic yersiniae secrete about a dozen anti-host proteins, the Yops, by a pathway which does not involve cleavage of a classical signal peptide. The Yop secretory apparatus, called Ysc, for Yop secretion, is the archetype of type III secretion systems (which serve for the secretion of virulence proteins by several animal and plant pathogens) and is related to the flagellar assembly apparatus. The Yop secretion signal is N-terminal but has not been defined to date. Apart from the Ysc machinery, secretion of at least four Yops requires cytoplasmic proteins called Syc (for specific Yop chaperone). Each Syc protein binds to its cognate Yop. Unlike most cytoplasmic chaperones, these proteins do not have an ATP-binding domain, and are presumably devoid of ATPase activity. They share a few common properties: an acidic pl, a size in the range of 15–20 kDa, and a putative amphipathic α-helix in the C-terminal portion. They were recently shown to have counterparts in other pathogenic bacteria, where they appear to have a similar function.  相似文献   

4.
Bacterial flagella and injectisomes are supramolecular structures that are responsible for motility and for delivering toxic proteins into the cytosol of eukaryotic cells, respectively. They look very similar to each other. Both systems are called type III secretion pathways, and their components share substantial sequence similarities. One remarkable feature of the type III systems is that the length of their substructure is fairly well controlled by a secretion switching machinery, which consists of at least two proteins, a length control protein and an integral membrane secretion component. Here, we review how and why the length of these structures must be accurately controlled.  相似文献   

5.
Yersinia enterocolitica uses type III secretion to transport Yop proteins into the cytoplasm of host cells. Previous work generated hypotheses for both co- and post-translational transport mechanisms in the Yersinia type III pathway. Here, we used ubiquitin (Ub) and UBP1, the Ub-specific protease, to examine whether Yops can be secreted when synthesized prior to recognition by the type III machinery. Fusion of Ub to the N-terminus of Yops blocked substrate recognition and secretion of hybrids generated with YopE, YopQ or YopR. UBP1 removed Ub from the N-terminus of these hybrids and allowed YopE, YopQ or YopR cleavage products to enter the secretion pathway. Following the release of Ub, Yersinia type III machines also transported the YopE cleavage product into the cytosol of tissue culture cells. Minimal secretion signals were also examined with the Ub/UBP1 system and some, but not all, of these signals promoted type III secretion even after polypeptides had been freed from Ub. These results suggest that recognition and secretion of Yop substrates by the type III machinery can occur by a post-translational mechanism.  相似文献   

6.
Pathogenic Yersinia species use a virulence-plasmid encoded type III secretion pathway to escape the innate immune response and to establish infections in lymphoid tissues. At least 22 secretion machinery components are required for type III transport of 14 different Yop proteins, and 10 regulatory factors are responsible for activating this pathway in response to environmental signals. Although the genes for these products are located on the 70-kb virulence plasmid of Yersinia, this extrachromosomal element does not appear to harbor genes that provide for the sensing of environmental signals, such as calcium-, glutamate-, or serum-sensing proteins. To identify such genes, we screened transposon insertion mutants of Y. enterocolitica W22703 for defects in type III secretion and identified ttsA, a chromosomal gene encoding a polytopic membrane protein. ttsA mutant yersiniae synthesize reduced amounts of Yops and display a defect in low-calcium-induced type III secretion of Yop proteins. ttsA mutants are also severely impaired in bacterial motility, a phenotype which is likely due to the reduced expression of flagellar genes. All of these defects were restored by complementation with plasmid-encoded wild-type ttsA. LcrG is a repressor of the Yersinia type III pathway that is activated by an environmental calcium signal. Mutation of the lcrG gene in a ttsA mutant strain restored the type III secretion of Yop proteins, although the double mutant strain secreted Yops in the presence and absence of calcium, similar to the case for mutants that are defective in lcrG gene function alone. To examine the role of ttsA in the establishment of infection, we measured the bacterial dose required to produce an acute lethal disease following intraperitoneal infection of mice. The ttsA insertion caused a greater-than-3-log-unit reduction in virulence compared to that of the parental strain.  相似文献   

7.
Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague.  相似文献   

8.
Pathogenic Yersinia species inject virulence proteins, known as Yops, into the cytosol of eukaryotic cells. The injection of Yops is mediated via a type III secretion system. Previous studies have suggested that YopE is targeted for secretion by two signals. One is mediated by its cognate chaperone YerA, whereas the other consists of either the 5' end of yopE mRNA or the N-terminus of YopE. In order to characterize the YopE N-terminal/5' mRNA secretion signal, the first 11 codons of yopE were systematically mutagenized. Frameshift mutations, which completely alter the amino acid sequence of residues 2-11 but leave the mRNA sequence essentially intact, drastically reduce the secretion of YopE in a yerA mutant. In contrast, a mutation that alters the yopE mRNA sequence, while leaving the amino acid sequence of YopE unchanged, does not impair the secretion of YopE. Therefore, the N-terminus of YopE, and not the 5' end of yopE mRNA, serves as a targeting signal for type III secretion. In addition, the chaperone YerA can target YopE for type III secretion in the absence of a functional N-terminal signal. Mutational analysis of the YopE N-terminus revealed that a synthetic amphipathic sequence of eight residues is sufficient to serve as a targeting signal. YopE is also secreted rapidly upon a shift to secretion-permissive conditions. This 'rapid secretion' of YopE does not require de novo protein synthesis and is dependent upon YerA. Furthermore, this burst of YopE secretion can induce a cytotoxic response in infected HeLa cells.  相似文献   

9.
Yersinia pestis expresses a set of plasmid-encoded virulence proteins called Yops and LcrV that are secreted and translocated into eukaryotic cells by a type III secretion system. LcrV is a multifunctional protein with antihost and positive regulatory effects on Yops secretion that forms a stable complex with a negative regulatory protein, LcrG. LcrG has been proposed to block the secretion apparatus (Ysc) from the cytoplasmic face of the inner membrane under nonpermissive conditions for Yops secretion, when levels of LcrV in the cell are low. A model has been proposed to describe secretion control based on the relative levels of LcrG and LcrV in the bacterial cytoplasm. This model proposes that under secretion-permissive conditions, levels of LcrV are increased relative to levels of LcrG, so that the excess LcrV titrates LcrG away from the Ysc, allowing secretion of Yops to occur. To further test this model, a mutant LcrG protein that could no longer interact with LcrV was created. Expression of this LcrG variant blocked secretion of Yops and LcrV under secretion permissive conditions in vitro and in a tissue culture model. These results agree with the previously described secretion-blocking activity of LcrG and demonstrate that the interaction of LcrV with LcrG is necessary for controlling Yops secretion.  相似文献   

10.
Yersinia species utilize a type III secretion system to inject toxins, called Yops (Yersinia outer proteins), into eukaryotic cells. The N-termini of the Yops serve as type III secretion signals, but they do not share a consensus sequence. To simplify the analysis of type III secretion signals, we replaced amino acids 2-8 of the secreted protein YopE with all permutations (27 or 128) of synthetic serine/isoleucine sequences. The results demonstrate that amphipathic N-terminal sequences, containing four or five serine residues, have a much greater probability than hydrophobic or hydrophilic sequences to target YopE for secretion. Multiple linear regression analysis of the synthetic sequences was used to obtain a model for N-terminal secretion signals. The model accurately classifies the N-terminal sequences of native type III substrates as efficient secretion signals.  相似文献   

11.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

12.
YscN, the putative energizer of the Yersinia Yop secretion machinery.   总被引:27,自引:8,他引:19       下载免费PDF全文
Pathogenic yersiniae secrete a set of 11 antihost proteins called Yops. Yop secretion appears as the archetype of the type III secretion pathway. Several components of this machinery are encoded by the virA (lcrA) and virC (lcrC) loci of the 70-kb pYV plasmid. In this paper, we describe yscN, another gene involved in this pathway. It is the first gene of the virB locus. It encodes a 47.8-kDa protein similar to the catalytic subunits of F0F1 and related ATPases, as well as to products of other genes presumed to be involved in a type III secretion pathway. YscN contains the two consensus nucleotide-binding motifs (boxes A and B) described by Walker et al. (J. E. Walker, M. Saraste, M. J. Runswick, and N. J. Gay, EMBO J. 1:945-951, 1982). We engineered a pYV mutant encoding a modified YscN protein lacking box A. This mutant, impaired in Yop secretion, can be complemented in trans by a cloned yscN gene. We conclude that YscN is a component of the Yop secretion machinery using ATP. We hypothesize that it is either the energizer of this machinery or a part of it.  相似文献   

13.
Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. In this paper, we show that LcrG can bind HeLa cells, and we analyse the role of proteoglycans in this phenomenon. Treatment of the HeLa cells with heparinase I, but not chondroitinase ABC, led to inhibition of binding. Competition assays indicated that heparin and dextran sulphate strongly inhibited binding, but that other glycosaminoglycans did not. This demonstrated that binding of HeLa cells to purified LcrG is caused by heparan sulphate proteoglycans. LcrG could bind directly to heparin-agarose beads and, in agreement with these results, analysis of the protein sequence of Yersinia enterocolitica LcrG revealed heparin-binding motifs. In vitro production and secretion by Y . enterocolitica of the Yops was unaffected by the addition of heparin. However, the addition of exogenous heparin decreased the level of YopE–Cya translocation into HeLa cells. A similar decrease was seen with dextran sulphate, whereas the other glycosaminoglycans tested had no significant effect. Translocation was also decreased by treatment of HeLa cells with heparinitase, but not with chondroitinase. Thus, heparan sulphate proteoglycans have an important role to play in translocation. The interaction between LcrG and heparan sulphate anchored at the surface of HeLa cells could be a signal triggering deployment of the Yop translocation machinery. This is the first report of a eukaryotic receptor interacting with the type III secretion and associated translocation machinery of Yersinia or of other bacteria.  相似文献   

14.
LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.  相似文献   

15.
Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop-Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ- triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE-, YopH- or YopJ- bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ- mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells.  相似文献   

16.
Yersinia effectors target mammalian signalling pathways   总被引:8,自引:4,他引:4  
Animals have an immune system to fight off challenges from both viruses and bacteria. The first line of defence is innate immunity, which is composed of cells that engulf pathogens as well as cells that release potent signalling molecules to activate an inflammatory response and the adaptive immune system. Pathogenic bacteria have evolved a set of weapons, or effectors, to ensure survival in the host. Yersinia spp. use a type III secretion system to translocate these effector proteins, called Yops, into the host. This report outlines how Yops thwart the signalling machinery of the host immune system.  相似文献   

17.
Yersinia virulence is dependent on the expression of plasmid-encoded secreted proteins called Yops. After bacterial adherence to receptors on the mammalian cell membrane, several Yops are transported by a type III secretion pathway into the host cell cytoplasm. Two Yops, YopH and YopE, prevent macrophages from phagocytosing Yersinia by disrupting the host cell cytoskeleton and signal transduction pathways. In contrast to this active inhibition of phagocytosis by Yersinia , other pathogens such as Salmonella , Shigella , Listeria and Edwardsiella actively promote their entry into mammalian cells by binding to specific host surface receptors and exploiting existing cell cytoskeletal and signalling pathways. We have tested whether Yersinia Yops can prevent the uptake of these diverse invasive pathogens. We first infected epithelial cells with Yersinia to permit delivery of Yops and subsequently with an invasive pathogen. We then measured the level of bacterial invasion. Preinfection with Yersinia inhibited invasion of Edwardsiella , Shigella and Listeria , but not Salmonella . Furthermore, we found that either YopE or YopH prevented Listeria invasion, whereas only YopE prevented Edwardsiella and Shigella invasion. We correlated the inhibitory effect of the Yops with the inhibitory action of the cell-signalling inhibitors Wortmannin, LY294002 and NDGA, and concluded that the four invasive pathogenic species enter epithelial cells using at least three distinct host cell pathways. We also speculate that YopE affects the rho pathway.  相似文献   

18.
Pseudomonas aeruginosa is a gram-negative bacterium that secretes many proteins into the extracellular medium via the Xcp machinery. This pathway, conserved in gram-negative bacteria, is called the type II pathway. The exoproteins contain information in their amino acid sequence to allow targeting to their secretion machinery. This information may be present within a conformational motif. The nature of this signal has been examined for P. aeruginosa exotoxin A (PE). Previous studies failed to identify a common minimal motif required for Xcp-dependent recognition and secretion of PE. One study identified a motif at the N terminus of the protein, whereas another one found additional information at the C terminus. In this study, we assess the role of the central PE domain II composed of six alpha-helices (A to F). The secretion behavior of PE derivatives, individually deleted for each helix, was analyzed. Helix E deletion has a drastic effect on secretion of PE, which accumulates within the periplasm. The conformational rearrangement induced in this variant is predicted from the three-dimensional PE structure, and the molecular modification is confirmed by gel filtration experiments. Helix E is in the core of the molecule and creates close contact with other domains (I and III). Deletion of the surface-exposed helix F has no effect on secretion, indicating that no secretion information is contained in this helix. Finally, we concluded that disruption of a structured domain II yields an extended form of the molecule and prevents formation of the conformational secretion motif.  相似文献   

19.
Numerous Gram-negative bacteria use a type III, or contact dependent, secretion system to deliver proteins into the cytosol of host cells. All of these systems identified to date have been shown to have a role in pathogenesis. We have identified 13 genes on the Yersinia enterocolitica chromosome that encode a type III secretion apparatus plus two associated putative regulatory genes. In order to determine the function of this chromosomally-encoded secretion apparatus, we created an in frame deletion of a gene that has homology to the hypothesized inner membrane pore, ysaV. The ysaV mutant strain failed to secrete eight proteins, called Ysps, normally secreted by the parental strain when grown at 28 degrees C in Luria-Bertani (LB) broth supplemented with 0.4 M NaCl. Disruption of the ysaV gene had no effect on motility or phospholipase activity, suggesting this chromosomally encoded type III secretion pathway is distinct from the flagella secretion pathway of Y. enterocolitica. Deletion of the ysaV gene in a virulence plasmid positive strain had no effect on in vitro secretion of Yops by the plasmid-encoded type III secretion apparatus. Secretion of the Ysps was unaffected by the presence or absence of the virulence plasmid, suggesting the chromosomally encoded and plasmid-encoded type III secretion pathways act independently. Y. enterocolitica thus has three type III secretion pathways that appear to act independently. The ysaV mutant strain was somewhat attenuated in virulence compared with the wild type in the mouse oral model of infection (an approximately 0.9 log difference in LD50). The ysaV mutant strain was nearly as virulent as the wild type when inoculated intraperitoneally in the mouse model. A ysaV probe hybridized to sequences in other Yersinia spp. and homologues were found in the incomplete Y. pestis genome sequence, indicating a possible role for this system throughout the genus.  相似文献   

20.
The cytotoxicity of Bordetella bronchiseptica to infected cells is known to be dependent on a B. bronchiseptica type III secretion system. Although the precise mechanism of the type III secretion system is unknown, BopN, BopD and Bsp22 have been identified as type III secreted proteins. In order to identify other proteins secreted via the type III secretion machinery in Bordetella, a type III mutant was generated, and its secretion profile was compared with that of the wild-type strain. The results showed that the wild-type strain, but not the type III mutant, secreted a 40-kDa protein into the culture supernatant. This protein was identified as BopB by the analysis of its N-terminal amino acid sequence. Severe cytotoxicity such as necrosis was induced in L2 cells by infection with the wild-type B. bronchiseptica. In contrast, this effect was not observed by the BopB mutant infection. The haemolytic activity of the BopB mutant was greatly impaired compared with that of the wild-type strain. The results of a digitonin assay strongly suggested that BopB was translocated into HeLa cells infected with the wild-type strain. Taken together, our results demonstrate that Bordetella secretes BopB via a type III secretion system during infection. BopB may play a role in the formation of pores in the host plasma membrane which serve as a conduit for the translocation of effector proteins into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号