首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of phosphoinositide-specific phospholipase C (PLC) by carbachol, dopamine and serotonin was measured by supplying exogenous [3H]phosphatidylinositol 4,5-bisphosphate to membranes prepared from human cortex dissected and frozen at autopsy. Subjects with Alzheimer's disease, Parkinson's disease or schizophrenia were compared to age-matched controls with no known neurological disorders. Stimulation of PLC by the neurotransmitters was dependent on the presence of GTPS. Carbachol elicited the greatest stimulations of PLC followed by serotonin and then dopamine. The maximal stimulations of PLC evoked by a neurotransmitter were similar for the various categories of subjects except in Parkinson's patients, where dopamine failed to stimulate PLC beyond the activity attained with carbachol. In the presence of carbachol, the sensitivity of PLC to GTPS was significantly increased in Alzheimer's membranes, but not in age-matched controls or Parkinson's. Overall, the experiments demonstrate the feasibility for using the exogenous substrate assay to study the functionality of the phosphoinositide transmembrane signaling system in human brain.Abbreviations PLC phospholipase C - GTPS guanosine 3-O-thiotriphosphate - Gpp(NH)p 5-guanylyl-imidodiphosphate - DA dopamine - CCh earbachol - 5-HT serotonin - PIP2 phosphatidylinositol 4,5-bisphosphate - PIP phosphatidylinositol 4-bisphosphate  相似文献   

2.
Transforming Growth Factor-β and Ischemic Brain Injury   总被引:8,自引:0,他引:8  
1. Necrosis and apoptosis are the two fundamental hallmarks of neuronal death in stroke. Nevertheless, thrombolysis, by using the recombinant serine protease t-PA, remains until now the only approved treatment of stroke in man.2. Over the last years, the cytokine termed Transforming Growth Factor-1 (TGF-1) has been found to be strongly up-regulated in the central nervous system following ischemia-induced brain damage.3. Recent studies have shown a neuroprotective activity of TGF-1 against ischemia-induced neuronal death. In vitro, TGF-1 protects neurons against excitotoxicity by inhibiting the t-PA-potentiated NMDA-induced neuronal death through a mechanism involving the up-regulation of the type-1 plasminogen activator inhibitor (PAI-1) in astrocytes.4. In addition, TGF-1 has been recently characterized as an antiapoptotic factor in a model of staurosporine-induced neuronal death through a mechanism involving activation of the extracellular signal-regulated kinase 1/2 (Erk1/2) and a concomitant increase phosphorylation of the antiapoptotic protein Bad.5. Altogether, these observations suggest that either TGF- signaling or TGF-1-modulated genes could be good targets for the development of new therapeutic strategies for stroke in man.  相似文献   

3.
Calcium and phospholipid dependent Protein kinase C (PKC) may play a role in memory function and pathogenesis of many neurodegenerative disorders such as Alzheimer's disease (AD). Abnormal phosphorylation by PKC as well as reduced levels of PKC has been implicated in the neurodegeneration associated with AD and aging. Recently, many subtypes of PKC isozymes have been identified by molecular biology techniques which are expressed differentially in various regions of the brain. The reduction and alterations in the activities and distribution of these subtypes of PKC isozymes may be accountable for the decline of selective neurons during aging. In order to investigate the role of PKC isozymes during aging, we examined the distribution of PKC-, , and mRNA, expressions between young (4 months) and old (25 months) rat brains using in situ hybridization histochemistry. Our studies showed that signals of three isoforms of PKC mRNA vary in cortical and hippocampal regions. However, no change was detected in any of the PKC isoforms mRNA expressions in aged animals.  相似文献   

4.
The extracellular microenvironment of the brain contains numerous biological redox agents, including ascorbate, glutathione, cysteine and homocysteine. During ischemia/reperfusion, aging or neurological disease, extracellular levels of reductants can increase dramatically owing to dysregulated homeostasis. The extracellular concentrations of transition metals such as copper and iron are also substantially elevated during aging and in some neurodegenerative disorders. Increases in the extracellular redox capacity can potentially generate neurotoxic free radicals from reduction of Cu(II) or Fe(III), resulting in neuronal cell death. To investigate this in vitro, the effects of extracellular reductants (ascorbate, glutathione, cysteine, homocysteine or methionine) on primary cortical neurons was examined. All redox agents except methionine induced widespread neuronal oxidative stress and subsequent cell death at concentrations occurring in normal conditions or during neurological insults. This neurotoxicity was totally dependent on trace Cu (0.4 M) already present in the culture medium and did not require addition of exogenous Cu. Toxicity involved generation of Cu(I) and H2O2, while other trace metals did not induce toxicity. Surprisingly, administration of Fe(II) or Fe(III) (2.5 M) completely abrogated reductant-mediated neurotoxicity. The potent protective activity of Fe correlated with Fe inhibiting reductant-mediated Cu(I) and H2O2 generation in cell-free assays and reduced cellular Cu uptake by neurons. This demonstrates a novel role for Fe in blocking Cu-mediated neurotoxicity in a high reducing environment. A possible pathogenic consequence for these phenomena was demonstrated by abrogation of Fe neuroprotection after pre-exposure of cultures to the Alzheimers amyloid beta peptide (A). The loss of Fe neuroprotection against reductant toxicity was greater after treatment with human A1–42 than with human A1–40 or rodent A1–42, consistent with the central role of A1–42 in Alzheimers disease. These findings have important implications for trace biometal interactions and free radical-mediated damage during neurodegenerative illnesses such as Alzheimers disease and old-age dementia.Abbreviations A amyloid beta - AD Alzheimers disease - Asc ascorbate - BC bathocuproine disulfonate - Cys cysteine - DCF 2,7-dichlorofluorescein - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - FCS fetal calf serum - Glut glutamate - GSH reduced glutathione - GSSG oxidized glutathione - Hcys homocysteine - ICP-MS inductively coupled plasma mass spectrometry - MEM minimal essential media - Met methionine - MnTMPyP manganese tetrakis(1-methyl-4-pyridyl)porphyrin - MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  相似文献   

5.
Oxygen free radical formation has been implicated in lesions caused by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and iron. Although MPTP produces a parkinsonian syndrome after its conversion to 1-methyl-4-phenylpyridine (MPP+) by type B monoamine oxidase (MAO) in the brain, the etiology of this disease remains obscure. This review focuses on the role of an environmental neurotoxin chemically related to MPP+-induced free radical generation in the pathogenesis of Parkinson's disease. Environmental-like chemicals, such as para-nonylphenol or bisphenol A, significantly stimulated hydroxyl radical (OH) formation in the striatum. Allopurinol, a xanthine oxidase inhibitor, prevents para-nonylphenol and MPP+-induced OH generation. Tamoxifen, a synthetic nonsteroidal antiestrogen, suppressed the OH generation via dopamine efflux induced by MPP+. These results confirm that free radical production might make a major contribution at certain stages in the progression of the injury. Such findings may be useful in elucidating the actual mechanism of free radical formation in the pathogenesis of neurodegenerative brain disorders, including Parkinson's disease and traumatic brain injuries.  相似文献   

6.
Tay-Sachs disease is an autosomal recessive lysosomal storage disease caused by -hexosaminidase A deficiency and leads to death in early childhood. The disease results from mutations in the HEXA gene, which codes for the chain of -hexosaminidase. The catastrophic neurodegenerative progression of the disease is thought to be a consequence of massive neuronal accumulation of GM2 ganglioside and related glycolipids in the brain and nervous system of the patients. Fuller understanding of the pathogenesis and the development of therapeutic procedures have both suffered from the lack of an animal model. We have used gene targeting in embryonic stem (ES) cells to disrupt the mouse Hexa gene. Mice homozygous for the disrupted allele mimic several biochemical and histological features of human Tay-Sachs disease. Hexa-/-mice displayed a total deficiency of -hexosaminidase A activity, and membranous cytoplasmic inclusions typical of GM2 gangliosidoses were found in the cytoplasm of their neurons. However, while the number of storage neurons increased with age, it remained low compared with that found in human, and no apparent motor or behavioral disorders could be observed. This suggests that the presence of -hexosaminidase A is not an absolute requirement of ganglioside degradation in mice. These mice should help us to understand several aspects of the disease as well as the physiological functions of hexosaminidase in mice. They should also provide a valuable animal model in which to test new forms of therapy, and in particular gene delivery into the central nervous system.  相似文献   

7.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

8.
Results of this investigation demonstrate that exposure to 17 -estradiol differentially and significantly regulates cortical nerve cell outgrowth depending on the cortical region. Parietal and occipital neurons treated with 1 nM 17 -estradiol showed a greater magnitude of neuronal outgrowth whereas outgrowth of temporal cortex neurons was decreased in the presence of 1 nM 17 -estradiol. Frontal cortex neurons showed a consistent enhancement of neuronal outgrowth that did not reach statistical significance. The dose response profile for 17 -estradiol regulation of the macromorphological features exhibited a bimodal dose response relationship whereas the dose response profile for 17 -estradiol regulation of the micromorphological features exhibited a dose response more characteristic of an inverted V-shaped function. An antagonist to the NMDA receptor antagonist, AP5, abolished the growth promoting effect of 17 -estradiol whereas the nuclear estrogen receptor antagonist ICI 182,780 did not. Lastly, neocortical neurons exposed to 17 -estradiol exhibited greater viability and survival than control neurons over a two week period. These data indicate that 17 -estradiol can enhance the growth and viability of select populations of neocortical neurons and that the growth promoting effects of 17 -estradiol can be blocked by an antagonist to the NMDA glutamate receptor and not by an antagonist to the estrogen nuclear receptor.  相似文献   

9.
1. The Src homology protein tyrosine phosphatase SHP2 is associated with cytoskeletal maintenance, cell division, and cell differentiation, but the role of SHP2 during central nervous system injury requires further definition. We therefore characterized the role of SHP2 during nitric oxide (NO)-induced programmed cell death (PCD).2. Employing primary hippocampal neurons from mice with a dominant negative SHP2 mutant to render the phosphatase site of the SHP2 protein biologically inactive, but functionally capable of binding substrate, neuronal injury was evaluated by trypan blue, DNA fragmentation, membrane phosphatidyl serine (PS) exposure, mitogen-activated protein (MAP) kinase phosphorylation, and cysteine protease activity. NO was administered through the NO generators SIN-1 (300 M) or NOC-9 (300 M).3. Following NO exposure, neuronal survival decreased from 89 ± 3% in untreated controls to 37 ± 2% in wild-type neurons and to 21 ± 4% in SHP2 mutant neurons. In sister cultures following NO exposure, this increased susceptibility to neuronal injury paralleled enhanced genomic DNA degradation and membrane PS exposure with PCD induction increasing in SHP2 mutant neurons by approximately 42% during specified time periods when compared to wild-type neurons. Interestingly, modulation of the MAP kinase p38 appears to represent an initial level of neuronal protection employed by SHP2. In addition, both the rate and degree of caspase 1- and caspase 3-like activities in SHP2 mutant neurons were significantly increased over a 24-h course when compared to wild-type neurons. Inhibition of caspase 1- and caspase 3-like activities reversed the progression of neuronal PCD, suggesting that inhibition of cysteine protease activity is a downstream mechanism for SHP2 to afford neuronal protection.4. Our work supports the premise that the tyrosine phosphatase SHP2 plays a dominant role during NO-induced PCD and may offer a potential molecular checkpoint against neurodegenerative disease.  相似文献   

10.
β-Amyloid and Cholinergic Neurons   总被引:3,自引:0,他引:3  
It is generally accepted that the crucial events in the pathogeny of Alzheimer's disease (AD) are the increased accumulation of amyloidogenic peptides derived from amyloid precursor protein and the harmful actions of these peptides on neurons, which bring about neurodegeneration. The enhanced -amyloid accumulation is known to be caused by mutations of specific genes in patients who suffer from the familial (hereditary) form of AD but who represent just a minor group within the total population of AD patients. The reasons for -amyloid accumulation are not known in the much larger group of patients with the sporadic form of the disease. A biochemical feature common to either form of the disease is the preferential atrophy and degeneration of cholinergic neurons, which is probably responsible for much of the cognitive decline characteristic of the disease. We present an overview of recent investigations on the interactions between -amyloid and cholinergic neurons.  相似文献   

11.
Acetyl-l-carnitine (ALCAR), normally produced in mitochondria, is a precursor of acetyl-CoA in the tricarboxylic (TCA) cycle. Since mitochondrial compromise and ATP depletion have been considered to play a role in neuronal degeneration in Alzheimer's disease (AD), we examined whether ALCAR attenuated oxidative stress and/or ATP depletion after exposure of cells to beta-amyloid (Abeta), a neurotoxic peptide that accumulates in AD brain. Differentiated SH-SY-5Y human neuroblastoma cells were exposed for 2–24 h to 20 M Abeta in the presence and absence of 50 M ALCAR. ALCAR attenuated oxidative stress and cell death induced by Abeta neurotoxicity. Abeta depleted ATP levels, suggesting Abeta may induce neurotoxicity in part by compromising neuronal energy. ALCAR prevented ATP depletion; therefore, ALCAR may mediate its protective effect by buffering oxidative stress and maintaining ATP levels.  相似文献   

12.
Chromium(VI) Cr(VI) and cadmium (Cd) compounds are ubiquitous environmental carcinogens that have been associated with lung tumors and can induce apoptosis in various cell types. Three major mitogenactivation protein kinases (MAPKs), extracellular signalregulated kinase (ERK), cJUN Nterminal kinase (JNK) and p38, have been shown to regulate apoptosis. In this study we explore the abilities of Cr(VI) and Cd to activate JNK, p38 and ERK, including their roles in metalmediated growth inhibition and apoptosis in a human nonsmallcell lung carcinoma cell line, CL3. Exposure to K2Cr2O7 markedly activated JNK and p38 and moderately activated ERK in a dose and timedependent manner. The activated p38 decreased markedly and rapidly and the activated JNK decreased gradually when Cr(VI) was removed from media. At low cytotoxic doses, CdCl2 decreased ERK activity with concurrently transient activation of JNK, whereas at high cytotoxic doses it persistently activated all three MAPKs. The strength and duration of JNK and p38 activated by Cd were higher and longer than Cr(VI) did when compared at similar cytotoxic doses. In comparable experiment conditions Cd is a much stronger apoptotic inducer than Cr(VI) in CL3 cells. Crosstalk of MAPKs was observed in cells exposed to Cr(VI) but not Cd. Both metals could increase JNK activity through MKK7 but not MKK4. The Cdactivated JNK is involved in apoptosis, but the Cractivated JNK is not. PD98059, an inhibitor of the ERK upstream activators MKK1/2, greatly enhanced the cytotoxicity and apoptosis of cells treated with low Cd doses. SB202190, an inhibitor of p38, decreased the cytotoxicity and apoptosis induced by high Cd doses. Conversely, neither SB202190 nor PD98059 altered Cr(VI)induced cytotoxicity. The results suggest that JNK and p38 signals cooperatively participate in apoptosis induced by Cd and that the decreased ERK signal by low Cd doses contributes to growth inhibition or apoptosis. Oppositely, activation of ERK, JNK and p38 by Cr(VI) does not affect cytotoxicity.  相似文献   

13.
Cell death mechanisms in neurodegeneration   总被引:5,自引:1,他引:5  
Progressive cell loss in specific neuronal populations often associated with typical cytoskeletal protein aggregations is a pathological hallmark of neurodegenerative disorders, but the nature, time course and molecular causes of cell death and their relation to cytoskeletal pathologies are still unresolved. Apoptosis or alternative pathways of cell death have been discussed in Alzheimer's disease and other neurodegenerative disorders. Apoptotic DNA fragmentation in human brain as a sign of neuronal injury is found too frequent as to account for continous neuron loss in these slowly progressive processes. Morphological studies revealed extremely rare apoptotic neuronal death in Alzheimer's disease but yielded mixed results for Parkinson's disease and other neurodegenerative disorders. Based on recent data in human brain, as well as in animal and cell culture models, a picture is beginning to emerge suggesting that, in addition to apoptosis, other forms of programmed cell death may participate in neurodegeneration. Better understanding of the molecular players will further elucidate the mechanisms of cell death in these disorders and their relations to cytoskeletal abnormalities. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards multiple noxious factors discussed in the pathogenesis of neurodegeneration. In conclusion, although many in vivo and in vitro data are in favor of apoptosis involvement in neurodegenerative processes, there is considerable evidence that very complex events may contribute to neuronal death with possible repair mechanisms, the elucidation of which may prove useful for future prevention and therapy of neurodegenerative disorders.  相似文献   

14.
Ethanol significantly enhances cell death of differentiated rat cerebellar granule neurons on culture in a serum-free medium containing a depolarizing concentration of KCl (25 mM), 5 M MK-801 (an NMDA receptor antagonist), and 20–200 mM ethanol for 1–4 days. Cell death augmented by ethanol was concentration- and time-dependent with neurons displaying hallmark apoptotic morphology and DNA fragmentation that correlated with the activation of cytosolic caspase-3. Inclusion of 5 M MK-801 or 100 M glycine in culture media did not alter rates of cell death indicating ethanol toxicity is mediated via an NMDA receptor-independent pathway. Preincubation with 50 M gangliosides GM1, GD1a, GD1b or GT1b for 2 h, or preincubation with 10 M LIGA20 (a semisynthetic GM1 with N-dichloroacetylsphingosine) for 10 min, attenuated caspase-3 activity and ethanol-induced cell death. Data show native gangliosides and a synthetic derivative are potently neuroprotective in this model of ethanol toxicity, and potentially serve as useful probes to further unravel the mechanisms relevant to neuronal apoptosis.  相似文献   

15.
Transglutaminase catalyzes the intermolecular cross-linking of peptides between Gln and Lys residues, forming an -(-glutamyl) lysine bond. Amyloid -peptide, a major constituent of the deposits in Alzheimer disease, contains Lys16, Lys28, and Gln15 which may act as substrates of transglutaminase. Transglutaminase treatment of amyloid -peptide (1–28) and amyloid -peptide (1–40) yielded cross-linked oligomers. Transglutaminase-treated A retarded neurite extension of PC12 cells, and rat cultured neurons of hippocampus and septum, brain areas severely affected by Alzheimer disease, and subsequently caused cell death, whereas the transglutaminase-untreated counterparts did not show harmful effects. The transglutaminase-catalyzed oligomers of amyloid -peptide and their neurotoxicity may be involved in two characteristics in Alzheimer disease, neuronal degeneration and formation of the insoluble deposits.Abbreviations: AD – Alzheimer disease, A – amyloid -peptide, DMEM – Dulbecco's modified Eagle's medium, DMEM/F–12–1:1 mixture of DMEM and Ham's F–12 medium, FCS – fetal calf serum, HS – horse serum, PAGE – polyacrylamide gel electrophoresis, MTT – 3-(4,5-dimethylthiazol–2-yl)–2,5-diphenyltetrazolium bromide, NGF – nerve growth factor, TGase – transglutaminase.  相似文献   

16.
DNase , which cleaves chromosomal DNA into nucleosomal units (DNA ladder formation), has been suggested to be the critical component of apoptotic machinery. Using rat pheochromocytoma PC12 cells, which are differentiated to sympathetic neurons by nerve growth factor (NGF), we investigated whether DNase -like enzyme is present in neuronal cells and is involved in neuronal cell death. The nuclear auto-digestion assay for DNase catalyzing internucleosomal DNA cleavage revealed that nuclei from neuronal differentiated PC12 cells contain acidic and neutral endonucleases, while nuclei from undifferentiated PC12 cells have only acidic endonuclease. The DNA ladder formation observed in isolated nuclei from neuronal differentiated PC12 cells at neutral pH requires both Ca2+ and Mg2+, and is sensitive to Zn2+. The molecular mass of the neutral endonuclease present in neuronal differentiated PC12 cell nuclei is 32000 as determined by activity gel analysis (zymography). The properties of the neuronal endonuclease present in neuronal differentiated PC12 cell nuclei were similar to those of purified DNase from rat thymocytes and splenocytes. Interestingly, in neuronal differentiated PC12 cells, internucleosomal DNA fragmentation is observed following NGF deprivation, whereas undifferentiated PC12 cells fail to exhibit DNA ladder formation during cell death by serum starvation. These results suggest that the DNase -like endonuclease present in neuronal differentiated PC12 cell nuclei is involved in internucleosomal DNA fragmentation during apoptosis, induced by NGF deprivation.  相似文献   

17.
The accumulation of the -amyloid peptide (AP) in the brain, produced from the ubiquitously expressed amyloid precursor protein (APP) is a defining feature of Alzheimer's disease (AD). Consistent with studies demonstrating the importance of skin biopsy in the diagnosis of neurodegenerative disorders, we investigated whether differences in intracellular free calcium levels ([Ca2+]i) of cultured cutaneous fibroblasts derived from sporadic AD patients and from age-matched control individuals might be present. [Ca2+]i was measured in Fura-2AM-loaded human fibroblasts by dual wavelength spectrofluorimetry. AD cells exhibited lower [Ca2+]i as compared to the control cultures. Exposure of fibroblasts to AP resulted in increased [Ca2+]i of the control cells, but not of AD fibroblasts. Our test could prove useful in supporting the diagnosis of (sporadic) AD in patients suspected of suffering from the disease.  相似文献   

18.
Paraquat-Induced Free Radical Reaction in Mouse Brain Microsomes   总被引:5,自引:0,他引:5  
Paraquat has been implicated as an environmental toxin which may induce the syndrome of Parkinson's disease after exposure to this agent. However, the biochemical mechanism by which paraquat causes cell death and neurodegeneration has not been extensively studied. Paraquat was rapidly taken up by nerve terminals isolated from mouse cerebral cortices. It induced lipid peroxidation in a concentration dependent manner in the presence of NADPH and ferrous ion. The maximal stimulation effect was obtained at a paraquat concentration around 100 M and the Kmvalue for paraquat was 46.7 M. The lipid peroxidation required microsomal enzymes. Antioxidants, such as superoxide dismutase, catalase and promethazine significantly inhibited paraquat-induced lipid peroxidation. Due to its structural similarity to the pyridinium compound MPP+(N-methyl-4-phenyl pyridium ion), it may be taken up by dopamine neurons and cause lipid peroxidation and cell death resulting in the manifestation of Parkinsonian syndrome.  相似文献   

19.
Parkinsons disease (PD) is one of the most common neurodegenerative motor disorders, marked by chronic progressive loss of neurons in the substantia nigra. It has long been believed that PD is caused by environmental factors. The discovery of genetic factors involved in PD has improved the understanding of the pathology of the disease. The first gene found to be mutated in PD encodes for the presynaptic protein -synuclein. -Synuclein is a major component of Lewy bodies and Lewy neurites, which represent the morphological hallmarks of the disease. The mechanisms by which -synuclein is involved in nigral cell death remain poorly understood. Moreover, the factors triggering the formation of -synuclein-positive inclusion bodies remain enigmatic. Indeed, even the normal cellular functions of -synuclein and of the other synucleins (-synuclein and -synuclein) are still unknown. Several lines of evidence suggest that they play a role in the regulation of vesicular turnover under normal nonpathological conditions.The work of O. von Bohlen und Halbach is supported by the DFG (Forschergruppe FOR 302 and SFB 636)  相似文献   

20.
Alzheimer''s Amyloid-β as a Preventive Antioxidant for Brain Lipoproteins   总被引:2,自引:0,他引:2  
1. Increased production of A in a form of lipoprotein antioxidant under the action of increased oxidative stress in aging with subsequent chelation of transition metal ions by A, accumulation of toxic A–metal lipoprotein complexes, production of reactive oxygen species, and neurotoxicity are reviewed and postulated to form the temporal sequence of events in the development of Alzheimer's disease (AD).2. Since (i) A binds copper stronger than iron and other transition metals, and (ii) copper is a more efficient catalyst of oxidation than other transition metals, chelation of copper by A is proposed to be a most important part of this pathway.3. Whereas this amyloid-binds-copper (ABC) model does not remove A peptide from its central place in our current thinking of AD, it places additional factors in the center of discussion.4. Most importantly, they embrace pathological mechanisms known to develop in aging (which is the most important risk factor for AD), such as increased production of reactive oxygen species by mitochondria, that can be positioned upstream relative to the generation of A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号