首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild-type Citrobacter freundii cannot grow on melibiose as a sole source of carbon. The melibiose transporter gene melB was cloned from a C. freundii mutant M4 that could utilize melibiose as a sole carbon source. Although the cloned melB gene is closely similar to the melB genes of other bacteria, it is cryptic because of a frameshift mutation. Site-directed mutagenesis was used to construct a functional melB gene by deleting one nucleotide, resulting in the production of an active melibiose transporter. The active MelB transporter could utilize Na(+) and H(+) as coupling cations to melibiose transport. The amino acid sequence of the C. freundii MelB was found to be most similar to those of Salmonella typhimurium and Escherichia coli MelB. These facts are consistent with the phylogenetic relationship of bacteria and the cation coupling properties of the melibiose transporters.  相似文献   

2.
Summary The nucleotide sequence of the melB gene coding for the Na+(Li+)/melibiose symporter of Salmonella typhimurium LT2 was determined, and its amino acid sequence was deduced. It consists of 1428 bp, corresponding to a protein of 476 amino acid residues (calculated molecular weight 52800). The amino acid sequence is homologous to that of the melibiose permease of Escherichia coli K12, with 85% identical residues. All, except one, of the amino acid residues that have been reported to be important for cation or substrate recognition in the melibiose permease of E. coli are conserved in the melibiose permease of S. typhimurium. In addition, part of the sequence resembles the lactose permease of Streptococcus thermophilus, the animal glucose transporter (GLUT1), the plasmid-coded raffinose permease (RafB), and the NADH-ubiquinone oxidoreductase chain 4 (Nuo4) of Aspergillus amstelodami.The nucleotide sequence reported in this paper has been submitted to the DDBJ/GenBank/EMBL Data Bank with accession number X62101  相似文献   

3.
We isolated mutants of Escherichia coli which showed Li+-resistant growth on melibiose. The melibiose carrier of the mutants lost the ability to couple to H+, whereas it retained the ability to couple to Na+. The mutated gene, melB, of the mutants was cloned, and the nucleotide sequence was determined. The nucleotide replacements caused the following substitutions of amino acid residues in the melibiose carrier: Pro-142 with Ser, Leu-232 with Phe, or Ala-236 with Thr or Val. These amino acid residues are located in slightly hydrophobic regions of the melibiose carrier. The results provide strong support for the idea that such regions or their vicinities which contain those amino acid residues play an important role in H+ (or Li+) recognition or H+ (or Li+) transport by the melibiose carrier.  相似文献   

4.
5.
The mechanism of melibiose symport by the melibiose permease of Escherichia coli was studied by looking at the modifications of the facilitated diffusion properties of the permease which arise upon substitution of the coupled cations (H+, Na+, or Li+). Kinetic analysis of melibiose influx and efflux down a concentration gradient, exchange at equilibrium, and counterflow were examined in de-energized membrane vesicles resuspended in media allowing melibiose to be co-transported with either H+, Na+, or Li+. The data show that the maximal rates of melibiose efflux coupled to either H+, Na+, or Li+ are between 10 and 40 times faster than the corresponding influxes. This suggests that the permease functions asymmetrically. Cross-comparison between the rates of net [3H]melibiose entry during the influx reactions coupled to either cation and corresponding unidirectional sugar inflow during exchange and counterflow reactions leads to the conclusions that: 1) the step involving release of the co-substrates from the permease on the inner surface of the membrane is sequenced (sugar first and then coupled cation); 2) this step is rate determining for cycling of the permease. The Na+-melibiose passive flux data indicate in particular that release of Na+ ions rather than release of sugar into the intravesicular space is the slowest step during permease cycling. This property would hamper net passive Na+-melibiose influx but should allow exchange of sugar without concomitant exchange of the coupled cation. Finally, evidence is provided suggesting that the relative rates of release of the two co-substrates from the permease on the inner membrane surface varied considerably in relation to the identity of the coupled cation.  相似文献   

6.
Melibiose permease (MelB) of Escherichia coli is a secondary transporter that couples the uptake of melibiose and various other galactosides to symport of cations that can be Na+, Li+ or H+. MelB belongs to the glycoside-pentoside-hexuronide: cation symporter family of porters and is suggested to have 12 transmembrane helices. We have determined the three-dimensional structure of MelB at 10A resolution in the membrane plane with cryo-electron microscopy from two-dimensional crystals. The three-dimensional map shows a heart-shaped molecule composed of two domains with a large central cavity between them. The structure is constricted at one side of the membrane while it is open to the other. The overall molecular shape resembles those of lactose permease and glycerol-3-phosphate transporter. However, organization of helices in MelB seems less symmetrical than in these two members of the major facilitator superfamily.  相似文献   

7.
The melibiose carrier of Salmonella typhimurium is under the control of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). We isolated mutants of the melibiose carrier that showed resistance to inhibition via the PTS. Growth of the mutants on melibiose was not inhibited by 2-deoxyglucose, a non-metabolizable substrate of the PTS, although growth of the parent strain was inhibited. Transport activity of the melibiose carrier in the mutants was fairly resistant to inhibition by 2-deoxyglucose, although the activity in the parent was sensitive to inhibition. We cloned the mutated melB gene that encodes the melibiose carrier, determined the nucleotide sequences, and identified replaced nucleotides. The mutations resulted in substitutions of Asp-438 with Tyr, Arg-441 with Ser, or Ile-445 with Asn. All of these residues are in the COOH-terminal region of the carrier. The secondary structure of this region is predicted to be an alpha-helix, and the mutated residues were on the same side of the helix. This region showed sequence similarity to a region of the MalK protein, in which substitution of amino acid residues also resulted in PTS-resistant mutants. Thus the COOH-terminal portion of the melibiose carrier is important for the interaction of dephosphorylated IIIGlc, which is an entity causing reversible inactivation of the carrier.  相似文献   

8.
Electrogenic events associated with the activity of the melibiose permease (MelB), a transporter from Escherichia coli, were investigated. Proteoliposomes containing purified MelB were adsorbed to a solid supported lipid membrane, activated by a substrate concentration jump, and transient currents were measured. When the transporter was preincubated with Na(+) at saturating concentrations, a charge translocation in the protein upon melibiose binding could still be observed. This result demonstrates that binding of the uncharged substrate melibiose triggers a charge displacement in the protein. Further analysis showed that the charge displacement is neither related to extra Na(+) binding to the transporter, nor to the displacement of already bound Na(+) within the transporter. The electrogenic melibiose binding process is explained by a conformational change with concomitant displacement of charged amino acid side chains and/or a reorientation of helix dipoles. A kinetic model is suggested, in which Na(+) and melibiose binding are distinct electrogenic processes associated with approximately the same charge displacement. These binding reactions are fast in the presence of the respective cosubstrate (k > 50 s(-1)).  相似文献   

9.
Covalent photolabeling of the melibiose permease (MelB) of Escherichia coli has been undertaken with the sugar analogue [(3)H]-p-azidophenyl alpha-D-galactopyranoside ([(3)H]-alpha-PAPG) with the purpose of identifying the domains forming the MelB sugar-binding site. We show that alpha-PAPG is a high-affinity substrate of MelB (K(d) = 1 x 10(-)(6) M). Its binding to or transport by MelB is Na-dependent and is competitively prevented by melibiose or by the high-affinity ligand p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG). Membrane vesicles containing overexpressed histidine-tagged recombinant MelB were photolabeled in the presence of [(3)H]-alpha-PAPG by irradiation with UV light (lambda = 250 nm). Eighty-five percent of the radioactivity covalently associated with the vesicles was incorporated in a polypeptide corresponding to MelB monomer. MelB labeling was completely prevented by an excess of melibiose or alpha-NPG during the assay. Radioactivity analysis of CNBr cleavage or limited proteolysis products of the purified [(3)H]-alpha-PAPG-labeled transporter suggests that several domains of MelB are targets for labeling. One of the labeled CNBr cleavage products is a peptide with an apparent molecular mass of 5.5 kDa. It is shown that (i) its amino acid sequence is that of the Asp124-Met181 domain of MelB (7.5 kDa), which includes the cytoplasmic loop 4-5 connecting helices IV and V, the hydrophobic helix V, and the outer loop connecting helices V-VI, and (ii) that Arg141 in loop 4-5 is the only labeled amino acid of this peptide. Labeling of loop 4-5 provides independent evidence that this specific domain plays a significant role in MelB transport. Comparison with the well-characterized equivalent domain of LacY suggests that sugar transporters with similar structure and substrate specificity may have conserved domains involved in sugar recognition.  相似文献   

10.
Replacement of the glycine at position 117 by a cysteine in the melibiose permease creates an interesting phenotype: while the mutant transporter shows still transport activity comparable to the wild type its pre steady-state kinetic properties are drastically altered. The transient charge displacements after substrate concentration jumps are strongly reduced and the fluorescence changes disappear. Together with its maintained transport activity this indicates that substrate translocation in G117C melibiose permease is not impaired but that the initial conformation of the mutant transporter differs from that of the wild type permease. A kinetic model for the G117C melibiose permease based on a rapid dynamic equilibrium of the substrate free transporter is proposed. Implications of the kinetic model for the transport mechanism of the wild type permease are discussed.  相似文献   

11.
We investigated the role in bacterial infection of a putative ABC transporter, designated ybiT, of Erwinia chrysanthemi AC4150. The deduced sequence of this gene showed amino acid sequence similarity with other putative ABC transporters of gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa, as well as structural similarity with proteins of Streptomyces spp. involved in resistance to macrolide antibiotics. The gene contiguous to ybiT, designated as pab (putative antibiotic biosynthesis) showed sequence similarity with Pseudomonas and Streptomyces genes involved in the biosynthesis of antibiotics. A ybiT mutant (BT117) was constructed by marker exchange. It retained full virulence in potato tubers and chicory leaves, but it showed reduced ability to compete in planta against the wild-type strain or against selected saprophytic bacteria. These results indicate that the ybiT gene plays a role in the in planta fitness of the bacteria.  相似文献   

12.
Cytoplasmic loop 4-5 of the melibiose permease from Escherichia coli is essential for the process of Na+-sugar translocation (Abdel-Dayem, M., Basquin, C., Pourcher, T., Cordat, E., and Leblanc, G. (2003) J. Biol. Chem. 278, 1518-1524). In the present report, we analyze functional consequences of mutating each of the three acidic amino acids in this loop into cysteines. Among the mutants, only the E142C substitution impairs selectively Na+-sugar translocation. Because R141C has a similar defect, we investigated these two mutants in more detail. Liposomes containing purified mutated melibiose permease were adsorbed onto a solid supported lipid membrane, and transient electrical currents resulting from different substrate concentration jumps were recorded. The currents evoked by a melibiose concentration jump in the presence of Na+, previously assigned to an electrogenic conformational transition (Meyer-Lipp, K., Ganea, C., Pourcher, T., Leblanc, G., and Fendler, K. (2004) Biochemistry 43, 12606-12613), were much smaller for the two mutants than the corresponding signals in cysteineless MelB. Furthermore, in R141C the stimulating effect of melibiose on Na+ affinity was lost. Finally, whereas tryptophan fluorescence spectroscopy revealed impaired conformational changes upon melibiose binding in the mutants, fluorescence resonance energy transfer measurements indicated that the mutants still show cooperative modification of their sugar binding sites by Na+. These data suggest that: 1) loop 4-5 contributes to the coordinated interactions between the ion and sugar binding sites; 2) it participates in an electrogenic conformational transition after melibiose binding that is essential for the subsequent obligatory coupled translocation of substrates. A two-step mechanism for substrate translocation in the melibiose permease is suggested.  相似文献   

13.
14.
Inducer exclusion, regulation of activity of transporter, is mediated by phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). To elucidate the molecular mechanism of the inducer exclusion, numerous biochemical and genetic studies have been performed. It is now well known that non-phosphorylated IIA(Glc) inhibits the transport via direct binding to the transporter. Analysis of inducer exclusion resistant mutants of lactose transporter and melibiose transporter in Escherichia coli and Salmonella typhimurium revealed amino acid residues that are involved in the interaction with IIA(Glc). It is concluded that there are multiple interaction sites for IIA(Glc) in these transporters.  相似文献   

15.
Ishida N  Kuba T  Aoki K  Miyatake S  Kawakita M  Sanai Y 《Genomics》2005,85(1):106-116
We report the molecular cloning of SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family. The gene SLC35D2 maps to chromosome 9q22.33. SLC35D2 cDNA codes for a hydrophobic protein consisting of 337 amino acid residues with 10 putative transmembrane helices. Northern blot analysis revealed the SLC35D2 mRNA as a single major band corresponding to 2.0 kb in length. SLC35D2 was localized in the Golgi membrane and exhibited around 50% similarity with three nucleotide sugar transporters: human SLC35D1 (UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter), fruitfly fringe connection (frc) transporter, and nematode SQV-7 transporter, the latter two being involved in developmental and organogenetic processes. Heterologous expression of SLC35D2 protein in yeast indicated that UDP-N-acetylglucosamine is a candidate for the substrate(s) of the transporter. The sequence similarity, subcellular localization, and transporting substrate suggest that SLC35D2 is a good candidate for the ortholog of frc transporter, which is involved in the Notch signaling system by providing the fringe N-acetylglucosaminyltransferase with the substrate. We also describe the identification and categorization of the human SLC35 gene family.  相似文献   

16.
Transport and hydrolysis of disaccharides by Trichosporon cutaneum.   总被引:1,自引:1,他引:0       下载免费PDF全文
Trichosporon cutaneum is shown to utilize six disaccharides, cellobiose, maltose, lactose, sucrose, melibiose, and trehalose. T. cutaneum can thus be counted with the rather restricted group of yeasts (11 to 12% of all investigated) which can utilize lactose and melibiose. The half-saturation constants for uptake were 10 +/- 3 mM sucrose or lactose and 5 +/- 1 mM maltose, which is of the same order of magnitude as those reported for Saccharomyces cerevisiae. Our results indicate that maltose shares a common transport system with sucrose and that there may be some interaction between the uptake systems for lactose, cellobiose, and glucose. Lactose, cellobiose, and melibiose are hydrolyzed by cell wall-bound glycosidase(s), suggesting hydrolysis before or in connection with uptake. In contrast, maltose, sucrose, and trehalose seem to be taken up as such. The uptake of sucrose and lactose is dependent on a proton gradient across the cell membrane. In contrast, there were no indications of the involvement of gradients of H+, K+, or Na+ in the uptake of maltose. The uptake of lactose is to a large extent inducible, as is the corresponding glycosidase. Also the glycosidases for cellobiose, trehalose, and melibiose are inducible. In contrast, the uptake of sucrose and maltose and the corresponding glycosidases is constitutive.  相似文献   

17.
Proton-linked sugar transport systems in bacteria   总被引:12,自引:0,他引:12  
The cell membranes of various bacteria contain proton-linked transport systems ford-xylose,l-arabinose,d-galactose,d-glucose,l-rhamnose,l-fucose, lactose, and melibiose. The melibiose transporter ofE. coli is linked to both Na+ and H+ translocation. The substrate and inhibitor specificities of the monosaccharide transporters are described. By locating, cloning, and sequencing the genes encoding the sugar/H+ transporters inE. coli, the primary sequences of the transport proteins have been deduced. Those for xylose/H+, arabinose/H+, and galactose/H+ transport are homologous to each other. Furthermore, they are just as similar to the primary sequences of the following: glucose transport proteins found in a Cyanobacterium, yeast, alga, rat, mouse, and man; proteins for transport of galactose, lactose, or maltose in species of yeast; and to a developmentally regulated protein of Leishmania for which a function is not yet established. Some of these proteins catalyze facilitated diffusion of the sugar without cation transport. From the alignments of the homologous amino acid sequences, predictions of common structural features can be made: there are likely to be twelve membrane-spanning -helices, possibly in two groups of six, there is a central hydrophilic region, probably comprised largely of -helix; the highly conserved amino acid residues (40–50 out of 472–522 total) form discrete patterns or motifs throughout the proteins that are presumably critical for substrate recognition and the molecular mechanism of transport. Some of these features are found also in other transport proteins for citrate, tetracycline, lactose, or melibiose, the primary sequences of which are not similar to each other or to the homologous series of transporters. The glucose/Na+ transporter of rabbit and man is different in primary sequence to all the other sugar transporters characterized, but it is homologous to the proline/Na+ transporter ofE. coli, and there is evidence for its structural similarity to glucose/H+ transporters in Plants.In vivo andin vitro mutagenesis of the lactose/H+ and melibiose/Na+ (H+) transporters ofE. coli has identified individual amino acid residues alterations of which affect sugar and/or cation recognition and parameters of transport. Most of the bacterial transport proteins have been identified and the lactose/H+ transporter has been purified. The directions of future investigations are discussed.  相似文献   

18.
The accessibility of Escherichia coli melibiose permease to aqueous solvent was studied following hydrogen-deuterium exchange kinetics monitored by attenuated total reflection-Fourier transform infrared spectroscopy under four distinct conditions where MelB forms different complexes with its substrates (H(+), Na(+), melibiose). Analysis of the amide II band upon (2)H(2)O exposure discloses a significant sugar protection of the protein against aqueous solvent, resulting in an 8% less exchange of the corresponding H(+)*melibiose*MelB complex compared with the protein in the absence of sugar. Investigation of the amide I exchange reveals clear substrate effects on beta-sheet accessibility, with the complex H(+)*melibiose*MelB being the most protected state against exchange, followed by Na(+)*melibiose*MelB. Although of smaller magnitude, similar changes in alpha-helices plus non-ordered structures are detected. Finally, no differences are observed when analyzing reverse turn structures. The results suggest that sugar binding induces a remarkable compactness of the carrier's structure, affecting mainly beta-sheet domains of the transporter, which, according to secondary structure predictions, may include cytoplasmic loops 4-5 and 10-11. A possible catalytic role of these two loops in the functioning of MelB is hypothesized.  相似文献   

19.
一个高亲和力水稻根系磷转运蛋白候选基因片段的克隆   总被引:4,自引:0,他引:4  
磷是影响作物产量的主要限制因子之一,植物在缺磷条件下主要高亲和力的磷转蛋白对磷进行有效吸收,利用RT-PCR技术,经过缺磷处理水稻京系17(Oryza sativa L.ssp. japonica cv.Jingxi17)的根系中的克隆到一个1178bp的磷转 蛋白基因片段OjPT1,测序后与GenBank中的已知序列进行氨基酸水平上的同源性比较,结果表明,该序列与拟南芥、马铃薯、番茄、苜蓿、长春花等植物的同源性分别在70%左右,并且与酵母、VA菌和子囊属脉胞菌等的磷转运蛋白也表出出较高的同源性。通过RT-PCR结果证明,该基因片段为诱导表达,该基因已被GenBan接收(收录号为AF239619)。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号