首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is considerable evidence that chronic moderate-to-high alcohol consumption increases blood pressure. The mechanisms by which this occurs are not clear. Alcohol consumption can induce oxidative stress and cytochrome P450 (CYP450) isoforms that are associated with oxidative stress and may influence vascular tone. To study the role of such mechanisms we examined whether reducing alcohol intake in moderate-to-heavy drinkers (40-110 g/day) resulted in changes in urinary excretion of 20-HETE, a CYP450 metabolite of arachidonic acid, and plasma and urinary F(2)-isoprostanes as markers of lipid peroxidation. After a 4-week run-in period during which healthy men maintained their usual drinking pattern they were randomized to a two-way crossover intervention study. In each of the 4-week treatment periods subjects either substituted their usual alcohol intake with a 0.9% alcohol beer or maintained their usual alcohol intake. Plasma and urinary F(2)-isoprostanes and urinary 20-HETE were measured by gas chromatography mass spectrometry, and serum gamma-glutamyl transpeptidase (gamma-GT) was measured as a biomarker of alcohol consumption, at the end of each study period. Sixteen healthy men age 51.0+/-2.7 years and with a BMI of 26.4+/-0.61 kg/m(2) completed the study. The reductions in alcohol intake (72.4+/-5.0 vs 7.9+/-1.6 g/day, p<0.001) and serum gamma-GT (geometric mean 24.4 U/L (95% CI 19.7, 30.2) vs 18.6 U/L (95% CI 15.5, 22.2, p<0.01) were accompanied by a significant fall in blood pressure as well as urinary 20-HETE excretion (158+/-23 vs 109+/-19 pmol/mmol creatinine, p<0.001) and plasma F(2)-isoprostanes (3438+/-158 vs 2929+/-145 pmol/L, p=0.01). A substantial reduction in alcohol consumption in healthy men lowered plasma F(2)-isoprostanes and urinary 20-HETE. Increased oxidative stress and 20-HETE production may be linked, at least in part, to the pathogenesis of alcohol-related hypertension.  相似文献   

2.
Oxidative stress in athletes during extreme endurance exercise   总被引:6,自引:0,他引:6  
Despite the many known health benefits of exercise, there is a body of evidence suggesting that endurance exercise is associated with oxidative stress. To determine whether extreme endurance exercise induces lipid peroxidation, 11 athletes (3 females, 8 males) were studied during a 50 km ultramarathon (trial 1) and during a sedentary protocol (trial 2) 1 month later. The evening before each trial, with dinner, subjects consumed 75 mg each d(3)-RRR and d(6)-all rac-alpha-tocopheryl acetates. Blood was obtained at baseline, 30 min pre-race, mid-race, post-race, 1 h post-race, 24 h post-race, and at corresponding times during trial 2. All 11 subjects completed the race; average run time was 391 +/- 23 min. Plasma F(2)-isoprostanes increased from 75 +/- 7 pg/ml at pre-race to 131 +/- 17 (p <.02) at post-race, then returned to baseline at 24 h post-race; F(2)-isoprostanes were unchanged during trial 2. Deuterated alpha-tocopherol disappearance rates were faster (2.8 x 10(-4) +/- 0.2 x 10(-4)) during the race compared to the sedentary trial (2.3 x 10(-4) +/- 0.2 x 10(-4); p <.03). These data suggest that extreme endurance exercise results in the generation of lipid peroxidation with a concomitant increase in vitamin E disappearance.  相似文献   

3.
Angiotensin (Ang) II induces oxidative stress in vitro and in animal models of hypertension. We tested the hypothesis that Ang II increases oxidative stress in human hypertension, as assessed by plasma F2-isoprostane concentrations. Plasma F2-isoprostanes, hemodynamic and endocrine parameters were measured at baseline and following a 55 min infusion of 3 ng/kg/min Ang II in 13 normotensive and 13 hypertensive volunteers ingesting a high- (200 mmol/d) or low- (10 mmol/d) sodium diet. Mean arterial pressure (MAP) and body mass index were higher in hypertensive subjects. Ang II infusion increased MAP (p<.001) and plasma aldosterone concentrations (p<.001) and decreased plasma renin activity (p<.001) and renal plasma flow (p<.001) to a similar extent in both groups. Plasma F2-isoprostane concentrations were similar at baseline. There was no effect of Ang II on F2-isoprostane concentrations during low-salt intake in either group (normotensive 51.7 +/- 7.1 to 53.7 +/- 6.5 pg/ml and hypertensive 52.2 +/- 8.2 to 56.2 +/- 10.0 pg/ml; mean +/- SE). During high-salt intake, Ang II increased F2-isoprostane concentrations in the hypertensive group (52.3 +/- 7.2 to 63.2 +/- 10.4 pg/ml, p=0.010) but not in the normotensive group (54.2 +/- 4.4 to 58.9 +/- 6.6 pg/ml, p=0.83). Acute Ang II infusion increases oxidative stress in vivo in hypertensive humans. The renin-angiotensin system may contribute to oxidative stress in human cardiovascular disease.  相似文献   

4.
Cocoa can contain a high concentration of flavanols and procyanidins which have been reported to have strong antioxidative activity. In the present study, male Sprague-Dawley rats were fed diets containing 0, 0.5, 1, or 2% cocoa rich in flavanols for two weeks. Blood, liver, heart and testes were collected and analyzed for markers of oxidative damage. Plasma epicatechin concentrations, 8-hydroxy-2'-deoxyguanosine (8OH2'dG), and oxidized and reduced glutathione were quantitated by HPLC with electrochemical detection. Plasma F(2)-isoprostanes were measured using an enzyme immunoassay. Plasma epicatechin concentrations increased in a dose-dependant fashion according to the amount of cocoa in the diet (128 nM-790 nM). Cocoa supplementation was associated with lower than normal concentrations of 8OH2'dG in the testes (0.590 + 0.40 vs. 0.328 + 0.29; p < 0.05). Liver and heart 8OH2'dG levels were unaffected by dietary treatment. In erythrocytes, the glutathione pool was significantly less oxidized in the cocoa fed group compared to controls (p < 0.05). In liver and testes, no differences in superoxide dismutase activities were detected. Concentrations of plasma F(2)-isoprostanes and thiobarbituric acid reactive substances were similar in all groups. These results support the concept that a diet rich in flavanols and procyanidins can improve oxidant defense and reduce tissue markers for oxidative stress, although these effects can be tissue specific.  相似文献   

5.
Strenuous, long-duration aerobic exercise results in endotoxemia due to increased plasma levels of lipopolysaccharide (LPS) leading to cytokine release, oxidative stress, and altered gastrointestinal function. However, the effect of short-term strenuous aerobic exercise either with or without antioxidant supplementation on exercise-induced endotoxemia is unknown. A significant increase in the concentration of bacterial LPS (endotoxin) was noted in the venous circulation of healthy volunteers following maximal acute aerobic exercise (0.14(-1) pre-exercise vs. 0.24(-1) postexercise, p <0.01). Plasma nitrite concentration also increased with exercise (0.09 +/- 0.05 nM x ml(-1) vs. 0.14 +/- 0.01 nM x ml(-1), p <0.05) as did ascorbate free radical levels (0.02 +/- 0.001 vs. 0.03 +/- 0.002 arbitrary units, p <0.05). Oral ascorbic acid supplementation (1000 mg) significantly increased plasma ascorbic acid concentration (29.45 mM x l(-1) to 121.22 mM x l(-1), p <0.05), and was associated with a decrease in plasma LPS and nitrite concentration before and after exercise (LPS: 0.01(-1); nitrite: 0.02 +/- 0.02 nM x ml(-1) vs. 0.02 +/- 0.03 nM x ml(-1)). Ascorbic acid supplementation led to a significant increase in ascorbate free radical levels both before (0.04 +/- 0.01 arbitrary units) and after exercise (0.06 +/- 0.02 arbitrary units, p <0.05). In conclusion, strenuous short-term aerobic exercise results in significant increases in plasma LPS levels (endotoxemia) together with increases in markers of oxidative stress. Supplementation with ascorbic acid, however, abolished the increase in LPS and nitrite but led to a significant increase in the ascorbate radical in plasma. The amelioration of exercise-induced endotoxemia by antioxidant pretreatment implies that it is a free radical-mediated process while the use of the ascorbate radical as a marker of oxidative stress in supplemented systems is limited.  相似文献   

6.
A correlation exists between obesity and hypertension. In the currently available models of diet-induced obesity, the treatment of rats with a high fat (HF) diet does not begin until adulthood. Our aim was to develop and characterize a model of pre-pubescent obesity-induced hypertension. Male Sprague-Dawley rats were fed a HF diet (35% fat) for 10 weeks, beginning at age 3 weeks. Blood pressure was measured by tail-cuff, and a terminal blood sample was obtained to measure fasting blood glucose, insulin, plasma renin, aldosterone, thiobarbitutic acid reactive substances (TBARS), and free 8-isoprostanes levels. The vascular reactivity in the aorta was assessed using a myograph. Blood pressure was increased in rats fed the HF diet (HF, 161 +/- 2 mm Hg vs. control, 137 +/- 2 mm Hg, P < 0.05). Blood glucose (HF, 155 +/- 4 mg/dL vs. control, 123 +/- 5 mg/dL, P < 0.05), insulin (HF, 232 +/- 63 pM vs. control, 60 +/- 11 pM, P < 0.05), TBARS (expressed as nM of malondialdehyde [MDA]/ml [HF, 1.8 +/- 0.37 nM MDA/ml vs. control 1.05 +/- 0.09 nM MDA/ml, P < 0.05]), and free 8-isoprostanes (HF, 229 +/- 68 pg/ml vs. control, 112 +/- 9 pg/ml, P < 0.05) levels were elevated in the HF diet group. Interestingly, plasma renin and aldosterone levels were not different between the groups. The maximum vasoconstriction to phenylephrine (10(-4) M) was increased in the HF diet group (HF, 26.1 +/- 1.5 mN vs. control 22.3 +/- 1.2 mN, P < 0.05). In conclusion, pre-pubescent rats become hypertensive and have increased oxidative stress and enhanced vasoconstriction when fed a HF diet. Surprisingly, this occurs without the increase in renin or aldosterone levels seen in the adult models of diet-induced obesity.  相似文献   

7.
There is growing evidence that oxidative stress contributes to the pathogenesis of hypertension. Our aim was to measure markers of oxidative stress in hypertensive subjects, and assess the potential confounding influences of antihypertensive therapy, other cardiovascular risk factors, gender, lifestyle, and nutrition. Markers of oxidative stress, including plasma and 24 h urinary F2-isoprostanes, were measured in 70 untreated (men = 43, women = 27) and 85 treated (men = 43, women = 42) hypertensive subjects and 40 normotensive controls (men = 20, women = 20). Overall, F2-isoprostanes were not elevated in hypertensive subjects compared with controls. However, urinary and plasma F2-isoprostanes were significantly lower in treated compared with untreated hypertensive men, but not women. In hypertensive men, the number of antihypertensive drugs taken was inversely associated with both urinary and plasma F2-isoprostanes (p <.05). Self-reported alcohol intake and biomarkers of alcohol consumption (gamma-glutamyl transpeptidase and high-density lipoprotein cholesterol) were positively associated with plasma but not urinary, F2-isoprostanes in men. Several nutrients were independently associated with plasma and urinary F2-isoprostanes in women. The results do not support the hypothesis that treated or untreated hypertensive subjects are under increased oxidative stress compared with normotensive controls.  相似文献   

8.
F(2)-isoprostanes, prostaglandin F(2)-like compounds formed by free radical-catalyzed lipid peroxidation, are considered the most reliable markers of oxidative stress. It has been repeatedly suggested that newborns are exposed to conditions of oxidative stress resulting from the change from a low oxygen pressure in utero to a high oxygen pressure at birth. We measured the levels of F(2)-isoprostanes in plasma of newborns by gas chromatography/mass spectrometry and we found that F(2)-isoprostanes are significantly higher in term newborns compared to healthy adults. The greatest values were found in preterm newborns in whom F(2)-isoprostanes are even higher than in term babies. Moreover a significant inverse correlation was found between the plasma levels of isoprostanes and the gestational age. A quite normal level of isoprostanes was found in the mothers both at delivery and during pregnancy. Placental total F(2)-isoprostanes (sum of free plus esterified) were significantly higher in preterm compared to term deliveries and such a difference might account for the difference in plasma isoprostanes. Plasma non-protein-bound iron is higher in preterm than in term newborns, even if no correlation was found with plasma F(2)-isoprostanes. Erythrocyte desferrioxamine-chelatable iron content (0 time) and release (24 h of aerobic incubation) are higher in newborns than in adults and in preterm than in term newborns, but again no correlation was found with plasma F(2)-isoprostanes. The marked increase in plasma isoprostanes suggests that oxidative stress is a feature of the physiopathological changes seen in the perinatal period.  相似文献   

9.
We attempted to improve the extraction procedures to determine the F(2)-isoprostanes in plasma of umbilical cord arterial and venous blood by gas chromatography mass spectrometry. Plasma samples were deproteinized and hydrolyzed; free and esterified F(2)-isoprostanes were extracted by solid-phase extraction columns with citric acid/methanol/cyclohexane and ammonia solution/methanol and then derivatized by PFBBr and BSTFA. Concentrations of total plasma F(2)-isoprostanes eluted at the retention time of an internal standard of 8-iso-prostaglandin F(2alpha)-D(4) were quantified. The absolute recovery was 83+/-1.9% (95% confidence). Intraassay precision and interassay precision were lower than 1.0%. Analytical accuracy was 99.0+/-0.4% (95% confidence). Linearity, r(2), over the concentration range of 10 to 5000 pg/ml of spiked 8-iso-prostaglandin F(2alpha) in plasma was 0.9985. The method detection limit was 21 pg/ml (99% confidence) and the limit of quantitation was approximately 4 pg/ml. Analysis of 200 neonatal cord blood samples revealed few overlapping peaks causing interference in the elution of the F(2)-isoprostanes. With the use of an autosampler and one technician, 48 samples can be completed within 24h with 6h of actual hands-on work. This method could be potentially employed for routine analysis of plasma F(2)-isoprostanes in clinical laboratories.  相似文献   

10.
The effects of a 10-day low-calorie diet (LCD; n = 8) or exercise training (ET; n = 8) on insulin secretion and action were compared in obese men (n = 9) and women (n = 7), aged 53 +/- 1 yr, with abnormal glucose tolerance by using a hyperglycemic clamp with superimposed arginine infusion and a high-fat drink. Body mass (LCD, 115 +/- 5 vs. 110 +/- 5 kg; ET, 111 +/- 7 vs. 109 +/- 7 kg; P < 0. 01) and fasting plasma glucose (LCD, 115 +/- 10 vs. 99 +/- 4 mg/dl; ET, 112 +/- 4 vs. 101 +/- 5 mg/dl, P < 0.01) and insulin (LCD, 23.9 +/- 5.6 vs. 15.2 +/- 3.9 microU/ml; ET, 17.6 +/- 1.9 vs. 13.9 +/- 2. 4 microU/ml; P < 0.05) decreased in both groups. There was a 40% reduction in plasma insulin during hyperglycemia (0-45 min) after LCD (peak: 118 +/- 18 vs. 71 +/- 14 microU/ml; P < 0.05) and ET (69 +/- 14 vs. 41 +/- 7 microU/ml; P < 0.05) and trends for reductions during arginine infusion and a high-fat drink. The 56% increase in glucose uptake after ET (4.95 +/- 0.90 vs. 7.74 +/- 0.82 mg. min-1. kg fat-free mass-1; P < 0.01) was significantly (P < 0.01) greater than the 19% increase (5.72 +/- 1.12 vs. 6.80 +/- 0.94 mg. min-1. kg fat-free mass-1; P = not significant) that occurred after LCD. The marked increase in glucose disposal after ET, despite lower insulin levels, suggests that short-term exercise is more effective than diet in enhancing insulin action in individuals with abnormal glucose tolerance.  相似文献   

11.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   

12.
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

13.
Twenty males ran either on a level treadmill (nonmuscle-damaging condition) or on a downhill treadmill (muscle-damaging condition). Blood and urine samples were collected before and after exercise (immediately after, 1h, 4h, 24h, 48h, and 96h). The following assays were performed: F(2)-isoprostanes in urine, protein carbonyls in plasma, glutathione, superoxide dismutase, glutathione peroxidase, and catalase in erythrocytes. The main finding was that monophasic redox responses were detected after nonmuscle-damaging exercise compared to the biphasic responses detected after muscle-damaging exercise. Based on these findings, muscle-damaging exercise may be a more appropriate experimental model to induce physiological oxidative stress.  相似文献   

14.
We compared hemodynamics with [3H]nitrendipine (calcium channel) binding to cardiac membranes from Bio 14.6 cardiomyopathic Syrian hamsters at 4 and 10 months with their F1B controls. A 50% increase in the number (Bmax) of nitrendipine binding sites (calcium channels) was seen only in the 4 month old myopathic vs controls (Bmax = 468 +/- 11 vs 309 +/- 10 fmol/mg prot with no change in affinity (KD) (KD = .65 +/- .12 vs .75 +/- .14 nM), while no differences in Bmax or KD were seen at 10 months (Bmax = 375 +/- 9 vs 362 +/- 7 fmol/mg prot/KD = .82 +/- .18 vs .89 +/- .17 nM) myopathic vs control respectively. Hemodynamic studies revealed no significant differences in cardiac output, cardiac index, stroke volume, heart rate, mean arterial pressure, peripheral resistance, body weight, heart weight at 4 months, but a significant decrease in peripheral resistance (1120 +/- 360 vs 2080 +/- 240) increase in body weight (118 +/- 2 vs 94 +/- 2 grams) and heart weight (97 +/- 5 vs 78 +/- 2 gms/100 gms body weight) in 10 month myopathic vs control animals. We conclude that the onset of cardiomyopathy at 4 months is associated with a selective increase in calcium channel binding sites and heart failure at 10 months is associated with a relative decrease in these sites.  相似文献   

15.
The purpose of this study was to determine the effect of ingestion of 100 g of carbohydrates on net muscle protein balance (protein synthesis minus protein breakdown) after resistance exercise. Two groups of eight subjects performed a resistance exercise bout (10 sets of 8 repetitions of leg presses at 80% of 1-repetition maximum) before they rested in bed for 4 h. One group (CHO) received a drink consisting of 100 g of carbohydrates 1 h postexercise. The other group (Pla) received a noncaloric placebo drink. Leg amino acid metabolism was determined by infusion of 2H5- or 13C6-labeled phenylalanine, sampling from femoral artery and vein, and muscle biopsies from vastus lateralis. Drink intake did not affect arterial insulin concentration in Pla, whereas insulin increased several times after the drink in CHO (P < 0.05 vs. Pla). Arterial phenylalanine concentration fell slightly after the drink in CHO. Net muscle protein balance between synthesis and breakdown did not change in Pla, whereas it improved in CHO from -17 +/- 3 nmol.ml(-1).100 ml leg(-1) before drink to an average of -4 +/- 4 and 0 +/- 3 nmol.ml(-1).100 ml leg(-1) during the second and third hour after the drink, respectively (P < 0.05 vs. Pla during last hour). The improved net balance in CHO was due primarily to a progressive decrease in muscle protein breakdown. We conclude that ingestion of carbohydrates improved net leg protein balance after resistance exercise. However, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.  相似文献   

16.
Ozone (O(3)), a major component of urban air pollution, is a strong oxidizing agent that can cause lung injury and inflammation. In the present study, we investigated the effect of inhalation of O(3) on levels of F(2)-isoprostanes in bronchoalveolar lavage fluid (BALF) and on levels of antioxidants in the BALF and plasma of hamsters. Because antioxidants, including urate, ascorbate, GSH, and vitamin E, defend the lungs by reacting with oxidizing agents, we expected to find a decrease in antioxidant levels after O(3) exposure. Similarly, we expected an increase in the levels of F(2)-isoprostanes, which are lipid peroxidation products. Exposure to 1.0 or 3.0 parts/million (ppm) O(3) for 6 h resulted in an increase in BALF neutrophil numbers, an indicator of acute inflammation, as well as elevation of BALF F(2)-isoprostanes. The higher dose of O(3) caused an increase in the BALF level of urate and a decrease in the plasma level of ascorbate, but 1.0 ppm O(3) had no effect on BALF or plasma antioxidant levels. Exposure to 0.12 ppm O(3) had no effect on BALF neutrophils or F(2)-isoprostanes nor on BALF and plasma antioxidants. We also investigated the effect of O(3) exposure of hamsters during exercise on F(2)-isoprostane and antioxidant levels. We found that exposure to 1.0 ppm O(3) during 1 h of exercise on a laddermill increased BALF levels of F(2)-isoprostanes but had no effect on BALF neutrophils or on BALF and plasma antioxidants. These results indicate that O(3) induces inflammation and biomolecule oxidation in the lungs, whereas extracellular antioxidant levels are relatively unchanged.  相似文献   

17.
The purpose of this study was to compare oxidative modification of blood proteins, lipids, DNA, and glutathione in the 24 hours following aerobic and anaerobic exercise using similar muscle groups. Ten cross-trained men (24.3 +/- 3.8 years, [mean +/- SEM]) performed in random order 30 minutes of continuous cycling at 70% of Vo(2)max and intermittent dumbbell squatting at 70% of 1 repetition maximum (1RM), separated by 1-2 weeks, in a crossover design. Blood samples taken before, and immediately, 1, 6, and 24 hours postexercise were analyzed for plasma protein carbonyls (PC), plasma malondialdehyde (MDA), and whole-blood total (TGSH), oxidized (GSSG), and reduced (GSH) glutathione. Blood samples taken before and 24 hours postexercise were analyzed for serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). PC values were greater at 6 and 24 hours postexercise compared with pre-exercise for squatting, with greater PC values at 24 hours postexercise for squatting compared with cycling (0.634 +/- 0.053 vs. 0.359 +/- 0.018 nM.mg protein(-1)). There was no significant interaction or main effects for MDA or 8-OHdG. GSSG experienced a short-lived increase and GSH a transient decrease immediately following both exercise modes. These data suggest that 30 minutes of aerobic and anaerobic exercise performed by young, cross-trained men (a) can increase certain biomarkers of oxidative stress in blood, (b) differentially affect oxidative stress biomarkers, and (c) result in a different magnitude of oxidation based on the macromolecule studied. Practical applications: While protein and glutathione oxidation was increased following acute exercise as performed in this study, future research may investigate methods of reducing macromolecule oxidation, possibly through the use of antioxidant therapy.  相似文献   

18.
Free radicals have been theorized to play a causative role in the normal aging process. To date, methods used to detect oxidative stress in aged experimental animals have only detected 2- to 3-fold differences or less between young and aged animals. Measurement of F(2)-isoprostanes has emerged as probably the most reliable approach to assess oxidative stress status in vivo. Therefore, we measured levels of F(2)-isoprostanes free in plasma and levels esterified in plasma lipids in young rats (3-4 months of age) and aged rats (22-24 months of age). Plasma concentrations of free F(2)-isoprostanes were increased dramatically by a mean of 20.3-fold (range 4.3 to 42.9-fold) and levels esterified in plasma lipids were also strikingly increased by a mean of 29.9-fold (range 15.8 to 50.0-fold). These findings unveil profound oxidative stress in aged rats which adds considerable support for the free radical theory of aging.  相似文献   

19.
Recent studies have shown that F2-isoprostane levels-a marker for lipid peroxidation-are increased in human renovascular hypertension but not in essential hypertension. Angiotensin II specifically stimulates F2-isoprostane production through activation of the AT1 receptor. The objective was to determine whether there is a relationship between the level of oxidative stress evaluated by measuring urinary F2-isoprostanes levels and polymorphisms of genes involved in the renine angiotensin aldosterone system (RAAS) regulation. The population studied included 100 subjects, 65 of whom were healthy normotensives; the other 35 were suffering from untreated, essential hypertension. The polymorphisms studied concern the genes encoding angiotensin I-converting enzyme (ACE/in16del/ins), angiotensin II receptor type I (AGTR1/A+39C[A+1166C] and AGTR1/A-153G), angiotensinogen (AGT/M235T), and aldosterone synthase (CYP11B2/T344C). Oxidative stress was evaluated by measuring urinary F2-isoprostanes levels. The characteristics of the population were as follows: men/women = 46/56; age = 50 +/- 10 years; BMI = 24 +/- 3 kg/m2; SBP = 131.7 +/- 17.2 mm Hg; DBP = 84.6 +/- 10.4 mm Hg. In univariate analysis, urinary F2-isoprostane levels were significantly lower in the presence of the G allele of AGTR1/A-153G (56 +/- 17 vs 76 +/- 39 pmol/mmol creatinine; P < 0.001, and P < 0.01 after Bonferroni correction for 10 tests). In multivariate analysis, taking into account BP, age, gender, BMI, plasma glucose, and total cholesterol, the G allele of AGTR1/A-153G is linked independently to urinary F2-isoprostanes level (P < 0.01). Our data suggest that F2-isoprostane level depends at least in part on the A-153G polymorphism of the angiotensin II AT1 receptor gene. The clinical and prognostic relevance of this polymorphism requires further investigation.  相似文献   

20.
The interrelationship between physical exercise, antioxidant supplementation, oxidative stress and plasma levels of homocysteine (Hcy) has not been adequately examined. The purpose of this study was to examine the effect of 2 months of vitamin E supplementation (800 IU/day alpha-tocopherol) (E) or placebo (P) in 38 triathletes on plasma Hcy concentrations, antioxidant potential and oxidative stress. It was hypothesized that vitamin E supplementation would reduce plasma Hcy and oxidative stress markers compared to placebo. Blood samples were collected 1 day prior to the race, immediately postrace and 1.5 h postrace. Plasma alpha-tocopherol was 75% higher (P<.001) in E versus P prerace (24.1+/-1.1 and 13.8+/-1.1 micromol/L, respectively), and this group difference was maintained throughout the race. Cortisol was significantly increased in both E and P (P<.001), but there was no difference in the pattern of change. There were no significant time, group or interaction effects on plasma Hcy concentrations between E and P. Plasma F(2)-isoprostanes increased 181% versus 97% during the race in E versus P, and lipid hydroperoxides were significantly elevated (P=.009) 1.5 h postrace in E versus P. Plasma antioxidant potential was significantly higher 1.5 h postrace in E versus P (P=.039). This study indicates that prolonged large doses of alpha-tocopherol supplementation did not affect plasma Hcy concentrations and exhibited pro-oxidant characteristics in highly trained athletes during exhaustive exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号