首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Granulins are a family of evolutionarily ancient proteins that are involved in regulating cell growth and division in animals. In this report a full-length cDNA, SPCP3, was isolated from senescent leaves of sweet potato (Ipomoea batatas). SPCP3 contains 1389 nucleotides (462 amino acids) in its open reading frame, and exhibits high amino acid sequence homologies (ca. 64-73.6%) with several plant granulin-containing cysteine proteases, including potato, tomato, soybean, kidney bean, pea, maize, rice, cabbage, and Arabidopsis. Gene structural analysis shows that SPCP3 encodes a putative precursor protein. Via cleavage of the N-terminal propeptide, it generates a protein with 324 amino acids (from the 139th to the 462nd amino acid residues), which contains two main domains: the conserved catalytic domain with the putative catalytic residues (the 163rd Cys, 299th His and 319th Asn) and the C-terminal granulin domain (from the 375th to the 462nd amino acid residues). Semi-quantitative RT-PCR and protein gel blot hybridization showed that SPCP3 gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was almost undetectable in mature green leaves, veins, and roots. Phylogenic analysis showed that SPCP3 displayed close association with a group of plant granulin-containing cysteine proteases which have been implied to be involved in programmed cell death. In conclusion, sweet potato SPCP3 is a functional, senescence-associated gene. Its mRNA and protein levels were significantly enhanced in natural and induced senescing leaves. The physiological role and/or function of SPCP3 associated with programmed cell death during leaf senescence were also discussed.  相似文献   

3.
4.
5.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

6.
EPSPS基因编码5-烯醇式丙酮酰莽草酸-3-磷酸合成酶,该酶是芳香族氨基酸合成的关键酶,该基因在细菌、真菌、藻类和植物中被广泛克隆和研究。EPSPS酶是草甘膦除草剂的靶点酶,过量表达EPSPS基因可以提高作物的草甘膦抗性。该研究根据甘薯基因组数据库设计引物,以‘广薯87’为材料提取RNA,通过RT-PCR方法扩增甘薯IbEPSPS基因,测序后进行生物信息学分析和表达分析。结果表明:(1)成功克隆获得甘薯IbEPSPS基因,该基因全长CDS为1569 bp,编码522个氨基酸,其中在第98~113、173~183位氨基酸序列具有2个EPSPS的保守结构域。(2)系统进化树分析结果表明,甘薯IbEPSPS基因与三裂叶薯(Ipomoea triloba)、打碗花(Calystegia hederacea)、田旋花(Convolvulus arvensis)和牵牛(Ipomoea nil)聚在一类,其中与三裂叶薯的亲缘关系最近。(3)实时荧光定量PCR分析结果表明,甘薯IbEPSPS基因在茎、叶和茎尖表达量较高,同时受到草甘膦胁迫后IbEPSPS基因表达量提高。该研究结果为进一步探讨甘薯IbEPSPS基因的功能及甘薯对草甘膦的耐药性机制奠定了基础。  相似文献   

7.
In this report a full-length cDNA, SPCAT1, was isolated from ethephon-treated mature L3 leaves of sweet potato. SPCAT1 contained 1479 nucleotides (492 amino acids) in its open reading frame, and exhibited high amino acid sequence identities (ca. 71.2-80.9%) with several plant catalases, including Arabidopsis, eggplant, grey mangrove, pea, potato, tobacco and tomato. Gene structural analysis showed that SPCAT1 encoded a catalase and contained a putative conserved internal peroxisomal targeting signal PTS1 motif and calmodulin binding domain around its C-terminus. RT-PCR showed that SPCAT1 gene expression was enhanced significantly in mature L3 and early senescent L4 leaves and was much reduced in immature L1, L2 and completely yellowing senescent L5 leaves. In dark- and ethephon-treated L3 leaves, SPCAT1 expression was significantly enhanced temporarily from 0 to 24 h, then decreased gradually until 72 h after treatment. SPCAT1 gene expression levels also exhibited approximately inverse correlation with the qualitative and quantitative H2O2 amounts. Effector treatment showed that ethephon-enhanced SPCAT1 expression was repressed by antioxidant reduced glutathione, NADPH oxidase inhibitor diphenylene iodonium (DPI), calcium ion chelator EGTA and de novo protein synthesis inhibitor cycloheximide. These data suggest that elevated reactive oxygen species H2O2, NADPH oxidase, external calcium influx and de novo synthesized proteins are required and associated with ethephon-mediated enhancement of sweet potato catalase SPCAT1 expression. Exogenous application of expressed catalase SPCAT1 fusion protein delayed or alleviated ethephon-mediated leaf senescence and H2O2 elevation. Based on these data we conclude that sweet potato SPCAT1 is an ethephon-inducible peroxisomal catalase, and its expression is regulated by reduced glutathione, DPI, EGTA and cycloheximide. Sweet potato catalase SPCAT1 may play a physiological role or function in cope with H2O2 homeostasis in leaves caused by developmental cues and environmental stimuli.  相似文献   

8.
9.
Summary A lambda phage recombinant clone, 25 S, which contains a 15.5-kb EcoRI human genomic DNA fragment, has been characterized. Restriction mapping and Southern blot hybridization indicated a 3.0-kb HindIII fragment containing metallothionein (MT)-like sequences. Several interesting features were found upon comparison of this nucleotide sequence with that of other human MT genes: (1) sequences representing the 5 regulatory region, the 5 untranslated region, and the first exon are not contained in the 3.0-kb HindIII fragment; (2) the coding sequence of the second exon (amino acids 10–31 encoding a portion of the -domain of the MT protein) has 11 amino acid changes out of a total of 21, whereas, the third exon (amino acids 32–61, representing the complete -domain of the MT protein) has only 4 amino acid substitutions; however, all cysteine residues are conserved; (3) this MT-like gene retains intron sequences and processing signals; (4) Southern blot analysis of human genomic DNA indicated this MT-like gene is located on a 10.5-kb EcoRI genomic DNA fragment; and (5) unusual AG/CT-rich repetitive elements are located within the second intron and upstream of the second exon of this MT-like gene. This gene is not expressed in response to metal induction in two human cell lines, as shown by northern blot analyses. Based on these observations, this MT-like gene represents a unique nonprocessed pseudogene of the human MT multigene family.  相似文献   

10.
黄明  郑学勤  邵寒霜   《广西植物》1998,18(2):165-168
以甘薯(Ipomoeabatatas(L.)Poir)叶为材料提取植物总RNA,经反转录后,利用多聚酶链式反应技术,扩增并克隆超氧化物歧化酶基因的cDNA,并进行测序分析。该序列全长482bp,其读码框编码152个氨基酸,与国外文献报道的甘薯块根SOD基因的cDNA序列相比,具有99%的同源性。  相似文献   

11.
New multiple-stress related gene isolated from sweet potato and designated it as MusI (multiple stress responsible gene I). Sequence analysis revealed that its full length cDNA was 998 bp long and included a 717 bp open reading frame encoding for 238 amino acids. Comparison of its cDNA and genomic DNA sequence showed that 3 exons were divided by 2 introns in its ORF region. Its deduced amino acid sequence contained a conserved rubber elongation factor (REF) domain and showed high homology with many stress-related proteins. Therefore, it was named MuSI (multiple stress responsible gene I). Southern hybridization analysis indicated that the MuSI gene may belong to a multi-gene family. Expression pattern of the MuSI gene showed that it was differently expressed among roots, stems, leaves, and flowers of a sweet potato, and its expression level was especially high in flowers and white fibrous roots. Its expression was also highly induced by various stress signals including dehydration, high salt, heavy metal, oxidation, and plant hormones. Stress tolerance experiment using transgenic plants overexpressing the MuSI gene showed that all independent transgenic tobacco lines have enhanced tolerance to high temperature stress. Among them, transgenic line 6 particularly showed tolerance to salt, heavy metal, and osmotic stress as well. These results suggest that the MuSI gene functions as a positive regulator of various stress responses and may be useful in improving stress tolerance of transgenic plants.  相似文献   

12.
甘薯NBS类抗病基因类似物的分离与序列分析   总被引:12,自引:0,他引:12  
利用已克隆植物抗病基因NBS(Nucleotide binding site)序列中的保守模体(motif)“P-loop”和“GLPL”合成简并引物,以甘薯(Ipomoea batatas)栽培品种青农2号基因组DNA为模板进行PCR扩增,通过T/A克隆、测序和序列分析,共得到15条具有连续ORF的抗病基因类似物(Resistance gene analogues,RGAs)序列,它们之间核苷酸序列间的相似性系数在41.2%-99.4%之间,而相应推测的氨基酸序列间的相似性系数在20.6%-100%之间,同时对分离的RGAs的核苷酸和氨基酸序列进行系统发育树分析,表明甘薯RGAs可分为TIR(Drosophila Toll or human interleukin receptor-like)和nonTIR两类.对甘薯RGAs和5个已克隆植物NBS的氨基酸序列进行结构分析表明,它们包括“P-loop”、“Kinase-2”、“Kinase-3a”、“GLPL”4个抗病基因所共有的保守模体.这些表明甘薯与其它物种的NBS类RGAs可能具有同样的起源和进化机制.  相似文献   

13.
14.
Jih PJ  Chen YC  Jeng ST 《Plant physiology》2003,132(1):381-389
The IPO (ipomoelin) gene was isolated from sweet potato (Ipomoea batatas cv Tainung 57) and used as a molecular probe to investigate its regulation by hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) after sweet potato was wounded. The expression of the IPO gene was stimulated by H(2)O(2) whether or not the plant was wounded, but its expression after wounding was totally suppressed by the presence of diphenylene iodonium, an inhibitor of NADPH oxidase, both in the local and systemic leaves of sweet potato. These results imply that a signal transduction resulting from the mechanical wounding of sweet potato may involve NADPH oxidase, which produces endogenous H(2)O(2) to stimulate the expression of the IPO gene. The production of H(2)O(2) was also required for methyl jasmonate to stimulate the IPO gene expression. On the contrary, NO delayed the expression of the IPO gene, whereas N(G)-monomethyl-L-arginine monoacetate, an inhibitor of NO synthase, enhanced the expression of the IPO gene after the plant was wounded. This study also demonstrates that the production of H(2)O(2) stained with 3,3'-diaminobenzidine hydrochloride could be stimulated by wounding but was suppressed in the presence of NO. Meanwhile, the generation of NO was visualized by confocal scanning microscope in the presence of 4,5-diaminofluorescein diacetate after sweet potato was wounded. In conclusion, when sweet potato was wounded, both H(2)O(2) and NO were produced to modulate the plant's defense system. Together, H(2)O(2) and NO regulate the expression of the IPO gene, and their interaction might further stimulate plants to protect themselves from invasions by pathogens and herbivores.  相似文献   

15.
蓝藻的类金属硫蛋白及其研究进展   总被引:2,自引:0,他引:2  
单细胞蓝藻中的类金属硫蛋白已经得到分离纯化,并在蛋白质水平上与标准的哺乳动物金属硫蛋白做了对比性分析,发现二者氨基酸组成和序列差异很大,前者只形成一个结构域,但二级结构和金属结合性质具有一定的相似性,是进化上功能趋同的表现.同时克隆并分析了它的基因ORF结构,研究了金属诱导和逆向转录抑制对于蛋白质表达的调控及类似于哺乳动物金属硫蛋白基因具有的放大和重排现象机理,提出了近期研究的重点和方向.  相似文献   

16.
NBS类植物抗病基因保守结构域的克隆为利用简并引物扩增抗病基因同源序列提供了可能.根据抗病基因Gro1-4、Gpa2、N等的P-loop和GLPL保守结构域设计简并引物,分离甘薯近缘野生种三浅裂野牵牛NBS类型抗病基因同源序列,共获得6条相关序列,核苷酸序列的相似性为48%~97%,推测氨基酸序列的相似性在25.2%~95.1%之间.系统进化分析表明,6条三浅裂野牵牛RGA序列可分为2个不同的类群:TIR-NBS和non-TIR-NBS.三浅裂野牵牛RGA序列与源自甘薯的RGA序列有很高的相似性,这在一定程度上反映了三浅裂野牵牛与甘薯之间的亲缘关系.分离的6条RGA序列分别命名为ItRGA1~ItRGA6,GenBank登录号分别为DQ849027~DQ849032.  相似文献   

17.
18.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxyl side of asparagine residues, and is possibly involved in the post-translational processing of proproteins. In this report one full-length cDNA, SPAE, was isolated from senescent leaves of sweet potato (Ipomoea batatas (L.) Lam). SPAE contained 1479 nucleotides (492 amino acids) in the open reading frame, and exhibited high amino acid sequence homologies (c. 61-68%) with asparaginyl endopeptidases of Vicia sativa, Phaseolus vulgaris, Canavalia ensiformis, and Vigna mungo. SPAE probably encoded a putative precursor protein. Via cleavage of the N- and C-termini, it produced a mature protein containing 325 amino acids (from the 51st to the 375th amino acid residues), the conserved catalytic residues (the 173rd His and 215th Cys amino acid residues), and the putative N-glycosylation site (the 332nd Asn amino acid residue). Semi-quantitative RT-PCR and western blot hybridization showed that SPAE gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was much less in mature green leaves, stems, and roots. Phylogenic analysis showed that SPAE displayed close association with vacuolar processing enzymes (legumains/asparaginyl endopeptidases), which function via cleavage for proprotein maturation in the protein bodies during seed maturation and germination. In conclusion, sweet potato SPAE is probably a functional, senescence-associated gene and its mRNA and protein levels were significantly enhanced in natural and induced senescent leaves. The possible role and function of SPAE associated with bulk protein degradation and mobilization during leaf senescence were also discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号