首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The iron-sulfur protein of biphenyl 2,3-dioxygenase (ISPBPH) was purified from Pseudomonas sp. strain LB400. The protein is composed of a 1:1 ratio of a large (alpha) subunit with an estimated molecular weight of 53,300 and a small (beta) subunit with an estimated molecular weight of 27,300. The native molecular weight was 209,000, indicating that the protein adopts an alpha 3 beta 3 native conformation. Measurements of iron and acid-labile sulfide gave 2 mol of each per mol of alpha beta heterodimer. The absorbance spectrum showed peaks at 325 and 450 nm with a broad shoulder at 550 nm. The spectrum was bleached upon reduction of the protein with NADPH in the presence of catalytic amounts of ferredoxinBPH and ferredoxinBPH oxidoreductase. The electron paramagnetic resonance spectrum of the reduced protein showed three signals at gx = 1.74, gy = 1.92, and gz = 2.01. These properties are characteristic of proteins that contain a Rieske-type [2Fe-2S] center. Biphenyl was oxidized to cis-(2R,3S)-dihydroxy-1-phenylcyclohexa-4,6-diene by ISPBPH in the presence of ferredoxinBPH, ferredoxinBPH oxidoreductase, NADPH, and ferrous iron. Naphthalene was also oxidized to a cis-dihydrodiol, but only 3% was converted to product under the same conditions that gave 92% oxidation of biphenyl. Benzene, toluene, 2,5-dichlorotoluene, carbazole, and dibenzothiophene were not oxidized. ISPBPH is proposed to be the terminal oxygenase component of biphenyl 2,3-dioxygenase where substrate binding and oxidation occur via addition of molecular oxygen and two reducing equivalents.  相似文献   

2.
The ferredoxin component (ferredoxinBPH) of biphenyl 2,3-dioxygenase was purified to homogeneity from crude cell extract of Pseudomonas sp strain LB400 using ion exchange, hydrophobic interaction and gel filtration column chromatography. The protein was a monomer with a molecular weight of 15000 and contained 2 gram-atoms each of iron and acid-labile sulfur. Ultraviolet-visible absorbance spectroscopy showed peaks at 325 nm and 460 nm with a broad shoulder around 575 nm. The spectrum was partially bleached in the visible region upon reduction by reductaseBPH with NADPH as the source of electrons. Electron paramagnetic resonance spectrometry showed no signals for the oxidized protein. Upon reduction with sodium dithionite, signals with gx = 1.82, gy = 1.92 and gz = 2.02 were detected. These results indicate that the protein contains a Rieske-type (2Fe-2S) iron-sulfur center. FerredoxinBPH was required for the oxidation of biphenyl by the terminal oxygenase component of the enzyme and is probably involved in the transfer of reducing equivalents from reductaseBPH to the terminal oxygenase during catalysis. Received 01 November 1996/ Accepted in revised form 27 May 1997  相似文献   

3.
Mucor circinelloides LU M40 and Penicillium aurantiogriseum P 35 produce extracellular β-glycosidases that are active on the cyanogenic glycoside amygdalin. From the culture broths of M. circinelloides, only one β-glycosidase could be identified, while two different enzymes – both having amygdalase activity – were found in culture broths of P. aurantiogriseum. The study of the mechanism of hydrolysis of the β-bis-glycoside amygdalin with purified enzymes from the two organisms indicated a possible sequential (two-step) reaction. In all cases, the first step of hydrolysis from amygdalin to prunasin was very rapid, while the second step from prunasin to cyanohydrin was much slower. No cyanohydrin lyase activity was found in the culture broths of either fungus. Received: 16 May 1997 / Accepted: 11 September 1997  相似文献   

4.
Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of biphenyl to cis-2,3-dihydroxy-2,3-dihydrobiphenyl. Incorporation of both atoms of molecular oxygen into the substrate was shown with 18O2. The nonlinear relationship between enzyme activity and protein concentration suggested that the enzyme is composed of multiple protein components. Ion-exchange chromatography of the cell extract gave three protein fractions that were required together to restore enzymatic activity. Similarities with other multicomponent aromatic hydrocarbon dioxygenases indicated that biphenyl dioxygenase may consist of a flavoprotein and iron-sulfur proteins that constitute a short electron transport chain involved in catalyzing the incorporation of both atoms of molecular oxygen into the aromatic ring.  相似文献   

5.
Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in the substrate specificity of the biphenyl 2,3-dioxygenases from both organisms.  相似文献   

6.
Biphenyl dioxygenase from Burkholderia (Pseudomonas) sp. strain LB400 catalyzes the first reaction of a pathway for the degradation of biphenyl and a broad range of chlorinated biphenyls (CBs). The effect of chlorine substituents on catalysis was determined by measuring the specific activity of the enzyme with biphenyl and 18 congeners. The catalytic oxygenase component was purified and incubated with individual CBs in the presence of electron transport proteins and cofactors that were required for enzyme activity. The rate of depletion of biphenyl from the assay mixture and the rate of formation of cis-biphenyl 2,3-dihydrodiol, the oxidation product, were almost equal, indicating that the assay accurately measured enzyme-specific activity. Four classes of CBs were defined based on their oxidation rates. Class I contained 3-CB and 2,5-CB, which gave rates that were approximately twice that of biphenyl. Class II contained 2,5,3',4'-CB, 2,3,2',5'-CB, 2,3,4,5-CB, 2,3,2',3'-CB, 2,4, 5,2',5'-CB, 2,5,3'-CB, 2,5,4'-CB, 2-CB, and 3,4,5-CB, which gave rates that ranged from 97 to 35% of the biphenyl rate. Class III contained only 2,3,4,2',5'-CB, which gave a rate that was 4% of the biphenyl rate. Class IV contained 2,4,4'-CB, 2,4,2',4'-CB, 3,4,5, 2'-CB, 3,4,5,3'-CB, 3,5,3',5'-CB, and 3,4,5,2',5'-CB, which showed no detectable depletion. Rates were not significantly correlated with the aqueous solubilities of the CBs or the number of chlorine substituents on the rings. Oxidation products were detected for all class I, II, and III congeners and were identified as chlorinated cis-dihydrodiols for classes I and II. The specificity of biphenyl dioxygenase for the CBs examined in this study was determined by the relative positions of the chlorine substituents on the aromatic rings rather than the number of chlorine substituents on the rings.  相似文献   

7.
Abstract In order to characterize the metabolites produced in vivo by biphenyl-2,3-dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase, the first two enzymes of the (polychloro)biphenyl catabolic pathway encoded by the bph locus of Pseudomonas sp. LB400, recombinant E. coli strains expressing the respective genes were constructed. Biphenyl-2,3-dioxygenase attack on 2,2'- or 2,4'-dichlorobiphenyl was shown to give rise to virtually quantitative ortho -dechlorination of these congeners by hydroxylation at the chlorinated carbon 2 and its unsubstituted neighbour. Elimination of hydrochloric acid directly leads to 2,3-dihydroxy-chlorobiphenyls and obviates the need for biphenyl-2,3-dihydrodiol-2,3-dehydrogenase for the catabolism of such congeners.  相似文献   

8.
We investigated the uptake of biphenyl by the psychrotolerant, polychlorinated biphenyl (PCB)-degrader, Pseudomonas sp. strain Cam-1 and the mesophilic PCB-degrader, Burkholderia sp. strain LB400. The effects of growth substrates, metabolic inhibitors, and temperature on [14C]biphenyl uptake were studied. Biphenyl uptake by both strains was induced by growth on biphenyl, and was inhibited by dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), which are metabolic uncouplers. The Vmax and Km for biphenyl uptake by Cam-1 at 22 degrees C were 5.4 +/- 1.7 nmol x min(-1) x (mg of cell protein)(-1) and 83.1 +/- 15.9 micromol x L(-1), respectively. The Vmax and Km for biphenyl uptake by LB400 at 22 degrees C were 3.2 +/- 0.3 nmol x min(-1) x (mg of cell protein(-1)) and 51.5 +/- 9.6 micromol x L(-1), respectively. At 15 degrees C, the maximum rate for biphenyl uptake by Cam-1 and LB400 was 3.1 +/- 0.3 nmol x min(-1) x (mg of cell protein)(-1) and 0.89 +/- 0.1 nmol x min(-1) x (mg of cell protein)(-1), respectively. Thus, the maximum rate for biphenyl uptake by Cam-1 at 15 degrees C was more than 3 times higher than that for LB400.  相似文献   

9.
The catechol 2,3-dioxygenase (C23O) gene in naphthalene catabolic plasmid pND6-1 of Pseudomonas sp. ND6 was cloned and sequenced. The C23O gene was consisted of 924 nucleotides and encoded a polypeptide of molecular weight 36 kDa containing 307 amino acid residues. The C23O of Pseudomonas sp. ND6 exhibited 93% and 89% identities in amino acid sequence with C23Os encoded by naphthalene catabolic plasmid NAH7 from Pseudomonas putida G7 and the chromosome of Pseudomonas stutzeri AN10 respectively. The Pseudomonas sp. ND6 C23O gene was overexpressed in Escherichia coli DH 5alpha using the lac promoter of pUC18, and its gene product was purified by DEAE-Sephacel and Phenyl-Sepharose CL-4B chromatography. The enzymology experiments indicated that the specific activity and thermostability of C23O from Pseudomonas sp. ND6 were better than those of C23O from Pseudomonas putida G7.  相似文献   

10.
Pseudomonas strain LB400 is able to degrade an unusually wide variety of polychlorinated biphenyls (PCBs). A genomic library of LB400 was constructed by using the broad-host-range cosmid pMMB34 and introduced into Escherichia coli. Approximately 1,600 recombinant clones were tested, and 5 that expressed 2,3-dihydroxybiphenyl dioxygenase activity were found. This enzyme is encoded by the bphC gene of the 2,3-dioxygenase pathway for PCB-biphenyl metabolism. Two recombinant plasmids encoding the ability to transform PCBs to chlorobenzoic acids were identified, and one of these, pGEM410, was chosen for further study. The PCB-degrading genes (bphA, -B, -C, and -D) were localized by subcloning experiments to a 12.4-kilobase region of pGEM410. The ability of recombinant strains to degrade PCBs was compared with that of the wild type. In resting-cell assays, PCB degradation by E. coli strain FM4560 (containing a pGEM410 derivative) approached that of LB400 and was significantly greater than degradation by the original recombinant strain. High levels of PCB metabolism by FM4560 did not depend on the growth of the organism on biphenyl, as it did for PCB metabolism by LB400. When cells were grown with succinate as the carbon source, PCB degradation by FM4560 was markedly superior to that by LB400.  相似文献   

11.
Degradation of highly chlorinated PCBs byPseudomonas strain LB400   总被引:2,自引:0,他引:2  
Summary Congeners of polychlorinated biphenyl (PCB) differ in the number and position of chlorine substituents. Although PCBs are degraded, those congoners with five or more chlorines have been considered resistant to bacterial degradation. Metabolism byPseudomonas strain LB400 of PCBs representing a broad spectrum of chlorination patterns and having from two to six chlorines was investigated. Degradation of pure PCB congeners and synthetic congener mixes was measured in resting cell assays with biphenyl- or Luria broth-grown cells. In addition, the appearance of metabolites was followed using HPLC purification, and GC and GC-MS characterization. 2,4,5,2,4,5-[14C]hexachlorobiphenyl was also used to follow the accumulation of14C-labeled metabolites. Evidence indicates that LB400 aerobically metabolizes representatives of all major structural classes of PCB's including several congeners which lack adjacent unchlorinated carbon atoms. The mechanisms by which many of these congeners are degraded are not fully understood, but it is apparent that aerobic bacteria can degrade a broader spectrum of PCB congeners than previously believed and that this broad spectrum of degradative competence can exist in a single strain.  相似文献   

12.
Summary A Pseudomonas strain able to grown on biphenyl and 2- and 4-chlorobiphenyl has been isolated from soil. Benzoate-grown cultures of this strain were able to cometabolize other chlorobiphenyls to the corresponding chlorobenzoates. In contrast to most of the chlorobiphenyl-degrading strains described previously in the literature, which are reported to form chlorobenzoates as end metabolites from chlorobiphenyls, this strain is also able to further cometabolize chlorobenzoates to form ring-cleaved compounds.  相似文献   

13.
【目的】通过节杆菌(Arthrobacter sp.)YC-RL1对多氯联苯降解过程中关键基因bph C的克隆与原核表达,鉴定其编码的2,3-二羟基联苯-1,2-双加氧酶Bph C的酶活特性与功能。【方法】以菌株YC-RL1全基因组为模板进行PCR扩增获得bph C基因,将该基因转入Escherichia coli BL21(DE3)感受态细胞后进行原核表达;利用镍柱亲和层析法对Bph C酶进行纯化并分别测定该酶在不同条件下对底物2,3-DHBP的催化特性,确定其最适反应pH、温度及不同金属离子对酶活特性的影响;进一步根据米氏方程对该酶的动力学参数进行测定与分析。【结果】通过PCR扩增获得了bphC基因,其大小为930 bp;对该基因进行原核表达,所得重组蛋白BphC携带有6个组氨酸标签,经纯化后体外仍具有活性,该酶作用于2,3-DHBP时的最适pH与温度分别为pH 7.4和30°C,且在最适条件下,Fe~(2+)、Cu~(2+)及Cd~(2+)等金属离子可明显促进其酶活作用,但多数金属离子对该酶有不同程度的抑制作用;该酶在与底物2,3-DHBP作用过程中,酶促动力学常数分别为K_m:8.67 mmol/L,V_(max):27.32μmol/s,k_(cat):15.55 s~(–1),k_(cat)/K_m:1.79 L/(mmol·s),其催化效率同有关报道中同类酶的动力学特性比较均有所提高。【结论】菌株YC-RL中的bphC基因对于多氯联苯的生物降解具有至关重要的作用,其编码的BphC是重要的芳香环裂解酶,该酶对其底物具有较高的亲和性,可在体外环境中发挥高效的酶促作用,具有良好的应用价值。  相似文献   

14.
DNA-DNA hybridization was used to compare the Pseudomonas strain LB400 genes for polychlorinated biphenyl (PCB) degradation with those from seven other PCB-degrading strains. Significant hybridization was detected to the genome of Alcaligenes eutrophus H850, a strain similar to LB400 in PCB-degrading capability. These two organisms showed a strong conservation of restriction sites in the region of DNA encoding PCB metabolism. No other sequence similarities were detected in the two genomes. DNA from the other PCB-degrading strains showed no hybridization to the probe, which demonstrated the existence of at least two distinct classes of genes encoding PCB degradation.  相似文献   

15.
A variety of commercial surfactants were tested to determine their effect on polychlorinated biphenyl (PCB) transformation by Pseudomonas LB400. Initial tests determined that most surfactants were fully or partially able to solubilize the PCB congeners 2,5,2′-chlorobiphenyl (CBP), 2,4,2′,4′-CBP, 2,3,5,2′,5′-CBP and 2,4,5,2′,4′,5′-CBP, at concentrations above the surfactants' critical micelle concentration (CMC). Surfactants were also found to have no negative effect on bacterial survival, as cell numbers were the same or higher after incubation in the presence of surfactants than after incubation without surfactants. A comparison of the extent of biotransformation of single PCB congeners by the bacterium revealed that, at surfactant concentrations above the CMC, the presence of an anionic surfactant promoted while nonionic surfactants inhibited PCB transformation, compared to a control with no surfactant. The rates of transformation of PCB congeners were also higher in the presence of the anionic surfactant compared to the control. The inhibitory effects of a nonionic surfactant, Igepal CO-630 at a concentration above its CMC, on transformation of 2,4,5,2′,5′-CBP could be eliminated by diluting the surfactant/PCB solution to a concentration close to the surfactant CMC. Received: 26 October 1998 / Received revision: 5 March 1999 / Accepted: 14 March 1999  相似文献   

16.
The biphenyl-mineralizing bacterium Burkholderia sp. strain LB400 also utilized 3-chloro-, 4-chloro-, 2,3-dichloro- and 2,4′-dichlorobiphenyl for growth. By the attack of the initial enzyme a chlorine was eliminated dioxygenolytically from position 2 of one of the aromatic rings when hydrogens of both were substituted by chlorine. The strain mineralized 3-chloro- and 2,3′-dichlorobiphenyl via the central intermediate 3-chlorobenzoate through its chlorocatechol pathway enzymes, but excreted stoichiometric amounts of 4-chlorobenzoate from 4-chloro- and 2,4-dichlorobiphenyl. These two compounds were mineralized by a co-culture of strain LB400 and a derivative of the (methyl-) benzoate-degrading strain Pseudomonas putida mt-2 (TOL). The complete degradation was achieved upon transfer of a cluster of at least five genes, encoding the regulated chlorocatechol pathway operon, from strain LB400 to strain mt-2. This transfer was demonstrated by the polymerase chain reaction. Received: 15 April 1998 / Received revision: 12 June 1998 / Accepted: 19 June 1998  相似文献   

17.
Pseudomonas sp. strain DCA1, which is capable of utilizing 1,2-dichloroethane (DCA) as sole carbon and energy source, was used to oxidize chlorinated methanes, ethanes, propanes, and ethenes. Chloroacetic acid, an intermediate in the DCA degradation pathway of strain DCA1, was used as a co-substrate since it was readily oxidized by DCA-grown cells of strain DCAI and did not compete for the monooxygenase. All of the tested compounds except tetrachloroethylene (PER) were oxidized by cells expressing DCA monooxygenase. Strain DCAI could not utilize any of these compounds as a growth substrate. Co-metabolic oxidation during growth on DCA was studied with 1,2-dichloropropane. Although growth on this mixture occurred, 1,2-dichloropropane strongly inhibited growth of strain DCAI. This inhibition was not caused by competition for the monooxygenase. It was shown that the oxidation of 1,2dichloropropane resulted in the accumulation of 2,3-dichloro-1-propanol and 2-chloroethanol.  相似文献   

18.
Four strains with high phenanthrene-degrading ability were isolated from petroleum badly polluted soil. The strainPseudomonas sp. ZJF08 demonstrated the highest rate of degradation (138. 1 mg·L?1·day?1) among them and degraded 97.1% of the phenanthrene in one week. The activities of two key enzymes of ZJF08, polycyclic aromatic hydrocarbon dioxygenase and catechol-2,3-oxygenase (C23O), were also assayed during the degradation of phenanthrene. Both of them reached their maximums on the 2nd day of degradation. The C23O gene (C7) ofPseudomonas sp. ZJF08 was cloned and expressed inEscherichia coli, and its gene product was purified by a Ni-NTA-agarose column. The optimum temperature for the purified C23O was 40°C at pH 7.5 and the C23O activity could be still detected when the temperature reached 70°C. The results showed that the C23O fromPseudomonas sp. strain ZJF08 exhibited better thermostability than its homologs reported.  相似文献   

19.
20.
Pseudomonas sp. S-47 is capable of degrading catechol and 4-chlorocatechol via the meta-cleavage pathway. XylTE products catalyze the dioxygenation of the aromatics. The xylT of the strain S-47 is located just upstream of the xylE gene. XylT is a typical chloroplast-type ferredoxin, which is characterized by 4 cystein residues that are located at positions 41, 46, 49, and 81. The chloroplast-type ferredoxin of Pseudomonas sp. S-47 exhibited a 98% identity with that of P. putida mt-2 (TOL plasmid) in the amino acid sequence, but only about a 40 to 60% identity with the corresponding enzymes from other organisms. We constructed two recombinant plasmids (pRES1 containing xylTE and pRES101 containing xylE without xylT) in order to examine the function of XylT for the reactivation of the catechol 2,3-dioxygenase (XylE) that is oxidized with hydrogen peroxide. The pRES1 that was treated with hydrogen peroxide was recovered in the catechol 2,3-dioxygenase (C23O) activity about 4 minutes after incubation, but the pRES101 showed no recovery. That means that the typical chloroplast-type ferredoxin (XylT) of Pseudomonas sp. S-47 is involved in the reactivation of the oxidized C23O in the dioxygenolytic cleavage of aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号