首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Tubule fragments were isolated from renal cortex of fed rats and glucose formation was measured after incubation with 5 mM-sodium lactate. 20 Compound D-600 (10-100 microM) decreased gluconeogenesis from lactate. This inhibition of the process by compound D-600 increased with increasing extracellular Ca2+ concentration, was overridden by noradrenaline and diminished by starvation for 24 h. 3. Inhibition of lactate-supported gluconeogenesis by compound D-600 was not prevented by the alpha 1-adrenoceptor antagonist thymoxamine. 4. Compound D-600 had little effect on gluconeogenesis from 2-oxoglutarate and increased gluconeogenesis from succinate. 5. Compound D-600 opposed stimulation of gluconeogenesis by noradrenaline or oxymetazoline (a selective alpha-adrenoceptor agonist) in a manner suggesting that compound D-600 is an alpha-adrenoceptor blocker. Oxymetazoline was more sensitive than noradrenaline to blockade by both compound D-600 and by the conventional alpha-adrenoceptor antagonist phentolamine. Noradrenaline became more sensitive to blockade by compound D-600 when extracellular Ca2+ was decreased. 6. Compound D-600 did not block stimulation of gluconeogenesis by angiotensin or cyclic AMP.  相似文献   

2.
The influence of Ca-antagonists and antispasmodic drugs on contractions by ACh and by DMPP were investigated. Verapamil (10(-5) to 10(-4) M), diltiazem (10(-5) to 10(-4) M) and D-600 (10(-5) to 10(-4) M) depressed both the contractions in a dose dependent manner. Papaverine (10(-5) to 10(-4) M) and Aspaminol (10(-6) to 10(-5) M) also depressed both the contractions in a dose dependent manner. These findings indicate that Ca2+, which initiates the contraction by ACh, is supplied from both the external medium and intracellular store sites.  相似文献   

3.
The effects of the voltage-sensitive, calcium channel blocking agents, D-600 and verapamil, on twitches and K+-induced contractures were studied using frog's toe muscles. K+-contracture tension was reduced by concentrations as low as 10(-8) M and the contractures were blocked by 10(-6) M. There was no significant difference in the effects of the two drugs. Twitches were potentiated by 5 X 10(-5) M D-600 and blocked only at 3 X 10(-4) M. The latter concentration also produced contractures in the toe muscles. As shown by other workers, the higher concentration also blocks action potential production and this is probably the way in which it blocks the twitch. Raising the bathing solution Ca2+ concentration from 1.08 to 10 or 20 mM, produced only a small, inconsistent, noncompetitive antagonism of the D-600 block of K+ contractures.  相似文献   

4.
The effects of the calcium antagonists ruthenium red and D-600 and the cation ionophore A23187 on steroidogenesis were investigated. Steroidogenesis triggered by corticotrophin and cyclic AMP was inhibited by each of the agents. Incubation of Y-1 cells with an excess of ethyleneglycol-bis-(beta-amino-ethylether)-N,N'-tetraacetic acid (EGTA) abolished the steroidogenic response to corticotrophin while the response to cyclic AMP was unaffected. The ability of ruthenium red and D-600 (1 . 10(-5) M), and A23187 (6 . 10(-6 M) to inhibit a response which does not require the presence of extracellular calcium (cyclic AMP induced steroidogenesis) suggests that they are altering intracellular calcium. Neither of the calcium antagonists nor the cation ionophore inhibited the steroidogenic response to exogenous pregnenolone, thereby suggesting that the cells were still viable. Only when A23187 was used in the presence of a 15-fold increase in extracellular calcium (4.8 mM) was the response to pregnenolone diminished. The data are interpreted as a further indication that, in intact cells, intracellular calcium plays a role in the steroidogenic pathway.  相似文献   

5.
Calcium ionophore A23187 (10(-5) M) increases the force of contraction of the frog atrium up to 27 + 4.8%. The calcium antagonists d-600 (5 X 10- M), Zn2+ (2 X 10(-5) M), Mn2+ (2 X 10(-4) M) decrease the force of contraction 50, 10 and 20%, respectively, and inhibit the positive inotropic effect of ionophore A23187. Inhibition of the ionophore effect by the blockers is determined by the ability of D-600, Zn2+ and Mn2+ to form complexes with the ionophore. Besides, the affinity of these blockers to the ionophore is higher than that of Ca2+. It is assumed that Zn2+, Mn2+ and D-600 possess higher affinity to ionophore A23187 as compared with myocardial Ca-channels. Fenigidin interacts with Ca-channels to a larger degree than with ionophore A23187.  相似文献   

6.
S J Mustafa  A O Askar 《Life sciences》1986,38(10):877-885
The mechanism(s) by which adenosine causes dilation of the vascular smooth muscle is not properly understood. Several mechanisms including the inhibition of calcium influx and intracellular translocation have been suggested for its action. This study is an attempt to further elucidate the site of action of adenosine in relation to calcium by making use of calcium entry blockers. Large (1 +/- 0.2 mm, o.d.) and small (0.5 +/- 0.2 mm, o.d.) branches of bovine left anterior descending coronary artery (LADCA) contracted with 50 mM K+ were used as a model for these studies. Concentration-response curves for various calcium entry blockers were obtained and the order of potency was found to be: D-600 greater than nifedipine greater than verapamil greater than diltiazem greater than lidoflazine for large branches and nifedipine greater than D-600 greater than verapamil greater than lidoflazine greater than diltiazem for small branches of LADCA. The concentration-response relationship for adenosine (10(-6)-10(-4) M) in the presence and absence of these drugs (10(-9)-10(-7) M) was unchanged. 8-phenyltheophylline (2 X 10(-5) M), an adenosine receptor antagonist was without an effect on the relaxations induced by various calcium entry blockers, however, it antagonized the relaxing response to adenosine. Lidoflazine at concentrations of 7 X 10(-7) M and 2 X 10(-7) M potentiated the effect of adenosine in relaxing the large and small LADCA, respectively. In summary, the data show an increased sensitivity of small coronary vessels to nifedipine, D-600 and lidoflazine. The data further suggest a different site of action for adenosine and calcium entry blockers.  相似文献   

7.
The effect of Ca2+ channel blockers (D600 and nicardipine) were investigated in our experiments on 5-day seedlings of pea. Nicardipine had more inhibiting effect on root elongation than D600. The Ca2+ channel blockers (CCB) depressed gravitropic response in roots. In root statocytes, the destruction of the polar arrangement of cell organelles and other changes were induced by 10(-5) M D600 or nicardipine treatment for 12 h. At ultrastructural level, there were observed a lack of polarity, pronounced vacuolization, and changes in dictyosome structure in treated statocytes. Cytochemical study indicated that Ca2+ ions were concentrated in the intracellular organelles and cell walls in statocytes treated with CCB similar to untreated control. The data suggest that the effects of the CCB that demonstrated the correlation between the loss of polarity in statocytes and altered root gravitropism may be functionally related to systems that regulate Ca2+ homeostasis, particularly Ca2+ channels.  相似文献   

8.
Rat striatal slices prelabelled with [3H]choline were superfused with dopamine D-1 and D-2 agonists and antagonists, separately and in combination, during measurement of [3H]acetylcholine (ACh) release. SKF38393 (D-1 agonist), 10(-7)-10(-4) M, and SCH23390 (D-1 antagonist), 10(-7)-10(-5) M, produced a dose-dependent increase in [3H]ACh release when given separately. The increased [3H]ACh release induced by either drug could not be attenuated by sufficient L-sulpiride to block D-2 receptors. Yet both SKF38393, 10(-6)-10(-5) M, and SCH23390, 10(-6)-10(-5) M, were able to partially or fully overcome the [3H]ACh release-depressant effect of cosuperfused LY171555 (D-2 agonist), 10(-6) M. This suggests that a functional antagonism regarding striatal ACh release exists between D-1 and D-2 dopaminergic receptor-mediated mechanisms, but that D-1 modulation of local ACh release does not occur at the level of the recognition site of the striatal D-2 receptor. Finally, although attenuation of the increased release of striatal [3H]ACh induced by 10(-5) M SCH23390 by SKF38393 was seen, it is possible that such functional antagonism is not mediated by exclusively D-1 dopaminergic means.  相似文献   

9.
In about 20% of the cones of untreated retinas of turtles, bright flash illumination of the periphery of their receptive field evokes a spike through the feedback mechanism from the L-horizontal cell. Such feedback spikes, never observed with central stimulation, are labile, but after they have disappeared they can be regained by depolarizing the cone. Feedback spikes are actual regenerative responses, since they show a critical threshold potential, are facilitated by cone depolarization and are blocked by hyperpolarization. They are associated with a membrane resistance decrease; tetrodotoxin (10(-5) M) does not block them. High Ca2+ media facilitate their appearance, but their effect is transient because of the cone hyperpolarization and the light response block that Ca2+ ions induce. Sr2+ ions (4-10 mM) facilitate the discharge of feedback spikes in response to peripheral illumination in every cone, whether or not it has previously shown feedback effects. In Sr2+ media, feedback spikes are stable and can be evoked by dim lights. Ba2+ (2-6 mM) also facilitates and stabilizes the discharge of feedback spikes. Co2+ and D-600 block the feedback spikes. Pharmacological agents that depolarize the L-horizontal cells, such as GABA, glutamate or nicotine, also block the feedback spikes. Both Sr2+ and Ba2+ also induce the appearance of spontaneous and off spikes, which are also blocked by Co2+, but these are not related to the feedback mechanism. These results strongly suggest that every turtle cone receives a feedback input from the L-horizontal cells, which would be able to induce an increase of the cone Ca2+ conductance, which may become regenerative.  相似文献   

10.
Experiments on isolated frog nerve-muscle preparations showed that manganese ions (0.4–5.0 mM) inhibit evoked transmitter release by reducing the quantum composition of the end-plate potentials, and they intensify spontaneous transmitter release to a certain extent by increasing the frequency of miniature potentials. Verapamil (1 · 10–6–5·10–5 g/ml) and D-600 (2.5·10–5 g/ml), by contrast with manganese ions, do not inhibit evoked release, but also intensify spontaneous release of the transmitter. All the agents tested prevent the potentiating effect of imidazole (3 mM). During repetitive stimulation, verapamil disturbs action potential generation in the motor nerve. Manganese ions had no such action. It is concluded that between the calcium channels of motor nerve endings and the calcium channels of heart muscle or the neuron soma there are molecular differences, expressed as sensitivity to the blocking action of verapamil and D-600.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 415–422, July–August, 1977.  相似文献   

11.
1. The administration of 2,4-dinitrofluorobenzene (DFB) (0.1-1 mM) to the ileal longitudinal muscle produced contractions within seconds of its administration. 2. A component of the first 2 min duration of the phasic phase of 1 or 0.5 mM DFB contraction and the first phase of 0.35 or 0.1 mM DFB contraction was inhibited by Ca2+ antagonists, 1 x 10(-6) M D-600. 3. The DFB contraction resistant to D-600 began to develop when the tissue ATP concentration rapidly reduced. 4. The DFB contraction in ileum consists of two components; an initial fast contraction which is sensitive to Ca2+ antagonists, and a late contraction referred to as a rigor which is resistant to it.  相似文献   

12.
Ouabain increases the enzyme secretion from the isolated rabbit pancreas and pancreatic fragments, but not from isolated pancreatic acini. The increase occurs after a delay of 45-60 min and is not accompanied by an increase in lactate dehydrogenase release. The stimulatory effect of ouabain (10(-5) M) is dependent on the presence of extracellular calcium, and is not antagonized by 10(-4) M atropin, 10(-4) M propranolol, 10(-5) M phentolamine, 10(-3) M dibutyryl-cyclic GMP, 10(-6) M tetrodotoxin, 10(-4) M verapamil or 10(-4) M D-600. Elevation of the extracellular potassium concentration to 120 mM in the presence of 10(-4) M atropin also increases the enzyme secretion from rabbit pancreatic fragments. The increase is again dependent on the presence of extracellular calcium and is resistant to adrenergic blockade and to tetrodotoxin, verapamil or D-600. Forskolin also stimulates a Ca2+-dependent release of amylase from pancreatic fragments but not from pancreatic acini. In the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IMX), ouabain (10(-5) M) and K+ (120 mM) cause an immediate increase in the cyclic AMP content of pancreatic fragments which does not occur in the absence of extracellular calcium. In pancreatic acini, the cAMP production is only slightly increased by ouabain. In the absence of IMX, the cAMP levels in fragments or acini are not detectably altered by ouabain or K+. The results suggest that the stimulation of enzyme secretion by ouabain and high K+ is an indirect effect, mediated by the release of an endogenous transmitter from non-cholinergic, non-adrenergic nerves in the intact preparations. The release and/or the effect of the transmitter appears to be mediated primarily by Ca2+ and secondarily by cyclic AMP.  相似文献   

13.
The potent marine toxin, maitotoxin, induced the release of gamma-[3H]aminobutyric acid (GABA) from reaggregate cultures of striatal neurons in a dose-dependent manner. Maitotoxin-induced release occurred following a lag period of several minutes and was persistent. Release induced by 70 mM K+ on the other hand was immediate and transient in nature. Co2+ (3 mM) and Cd2+ (1 mM) inhibited maitotoxin-induced release of GABA as did removal of extracellular Ca2+. However, the organic calcium antagonists nisoldipine, nitrendipine, and D-600 at concentrations of 10(-6) M did not block maitotoxin-induced or 70 mM K+-induced release. High concentrations of D-600 (10(-4) M) partially blocked both maitotoxin- and 70 mM K+-induced release. The dihydropyridine calcium agonist BAY K8644 (10(-6) M) did not enhance maitotoxin-induced or 70 mM K+-induced release. Replacement of Na+ in the incubation medium with choline led to an increased basal output of GABA and an apparent inhibition of the effect of maitotoxin. These data are discussed with reference to the hypothesis that maitotoxin can directly activate voltage-sensitive calcium channels.  相似文献   

14.
The synthesis, purification, and structural analysis of the major compounds resulting from photoderivatization of [Tyr36]-parathyroid hormone related peptide (1-36)amide [[Tyr36]PTHrP(1-36)amide] are described. The reaction of the synthetic peptide with 4-fluoro-3-nitrophenyl azide under nonaqueous conditions yields three major products (peaks D-1, D-2, and G), which were purified to homogeneity by reverse-phase high-performance liquid chromatography. Subsequent amino acid analysis showed that the peptides of peaks D-1 and G each lack one lysine residue, while the peptide in peak D-2 lacks one alanine residue, suggesting that these residues are chemically modified by photoderivatization. Sequence analysis of the photoderivatized peptides revealed that compounds D-1 and G were derivatized on Lys13 and Lys11, respectively. Compound D-2 was N-blocked, indicating that this compound is derivatized on the alpha-amino function of Ala1. Both Lys residues of D-2 were quantitatively recovered upon sequencing after digestion with endoproteinase Glu-C. Compounds D-2 and G had apparent KdS of 1 X 10(-9) M and 0.6 X 10(-9) M, respectively, for their receptors on ROS 17/2.8 cells, which are identical with or similar to that of the underivatized [Tyr36]PTHrP(1-36)amide. Compound G had the same adenylate cyclase stimulating potency as the underivatized, synthetic [Tyr36]PTHrP(1-36)amide, whereas compound D-2 was only a partial agonist, having about 25% of the maximal cAMP production. Compound D-1, which is modified on Lys13, retained only 2-4% of its receptor binding affinity and biological activity relative to that of its parent compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Two new stllbenes with two Isoprenoid groups, namely artostllbenes A (compound 1) and B (compound 2), were Isolated from the stems of Arfocarpus chama Buch.-Ham. by repeated column chromatography. The& structures were elucldated as (E)-4-[2-(7-meth-xy-2-2-d-methy-6-(3-methy-but-2-eny-)-2H-1-benz-pyran-5-y-)v-ny-]benzene-1- 2-dlol (compound 1) and (Z)-4-[2-(7-meth-xy-2-2-dimethy--6-(3-methy-but-2-eny-)-2H-1-benz-pyran-5-y-)v-ny-]ben- zene-l,2-dlol (compound 2) by spectroscopic methods, mainly by 1D-, 2D-NMR and MS spectra. Compounds 1 and 2 are two cls- and trans-lsomers and compound 2 is the flrst cis-stllbene isolated from Moraceous plants.  相似文献   

16.
J M Gorell  B Czarnecki 《Life sciences》1986,38(24):2239-2246
This study was done to provide pharmacologic evidence for the location of those striatal dopamine D-1 and D-2 receptors that participate in the regulation of local acetylcholine (ACh) release. Striatal tissue slices from adult male Sprague-Dawley rats were preloaded with [3H]choline and superfused in separate experiments with buffer containing either: a D-2-specific agonist (LY141865 or LY171555), a D-2 specific antagonist (L-sulpiride), a D-1 specific agonist (SKF38393), or a D-1 antagonist (SCH23390), in the presence or absence of tetrodotoxin (TTX), used to block interneuronal activity. With either D-2 agonist there was a dose-dependent decrease in K+-stimulated [3H]ACh release, maximally at 5 X 10(-7)-10(-6) M [agonist] and to the same extent with each drug. Both SKF38393 and SCH23390 increased [3H]ACh release at tested concentrations of these agents. Results were unchanged when any of the drugs used was superfused in the presence of TTX, 5 X 10(-7) M. These data are consistent with the hypothesis that populations of striatal D-1 and D-2 receptors exist on local cholinergic neurons, where they regulate ACh release. Alternative interpretations are discussed.  相似文献   

17.
The effects of K+ and the Ca2+ channel blocker D-600 on parathyroid hormone (PTH) release and cytoplasmic Ca2+ activity (Ca2+i) were measured at different Ca2+ concentrations in dispersed parathyroid cells from normal cattle and from patients with hyperparathyroidism. When the extracellular Ca2+ concentration was raised within the 0.5-3.0 mM range Ca2+i increased and PTH secretion was inhibited. There was also a stimulatory effect of Ca2+ on secretion as indicated by a parallel decrease of Ca2+i and PTH release when extracellular Ca2+ was reduced to less than 25 nM. Addition of 30-50 mM K+ stimulated PTH release and lowered Ca2+i. The effect of K+ was less pronounced in the human cells with a decreased suppressability of PTH release. The Ca2+ channel blocker D-600 had no effect on Ca2+i and PTH release in the absence of extracellular Ca2+. However, at 0.5-1.0 mM Ca2+, D-600 increased Ca2+i and inhibited PTH release, whereas the opposite effects were obtained at 3.0 mM Ca2+. The transition from inhibition to stimulation occurred at a higher Ca2+ concentration in the human cells and the right-shift in the dose-effect relationship for Ca2+-inhibited PTH release tended to be normalized by D-600. It is suggested that K+ stimulates PTH release by increasing the intracellular sequestration of Ca2+ and that the reduced response in the parathyroid human cells is due to the fact that Ca2+i already is lowered. D-600 appears to have both Ca2+ agonistic and antagonistic actions in facilitating and inhibiting Ca2+ influx into the parathyroid cells at low and high concentrations of extracellular Ca2+, respectively. D-600 and related drugs are considered potentially important for the treatment of hyperparathyroidism.  相似文献   

18.
The role of the calcium channel in the first large contraction (postvagal potentiation, PVP) of the atria at the end of the inhibitory phase of its response (IPR) to vagal stimulation has been investigated by studying the effects of agents acting on the calcium channel (e.g., Ca2+, Mn2+, La3+, and D-600) or sarcoplasmic reticulum (SR) (e.g., deoxycholate (DOC)). IPR was potentiated by high [Ca2+]o (3-16 mM) and also by the calcium channel blockers, Mn2+ (1 microM-0.5 mM), La3+ (0.1 microM-0.5 mM), D-600 (1.0-10 microM), and DOC (1 microM-0.5 mM). PVP was also potentiated by enhanced [Ca2+]o, but the PVP ratio, which employs a correction for the simultaneous changes in the force of spontaneous contraction was inhibited. This indicated greater potentiation of contractility during spontaneous activity by Ca2+ than during PVP. Mn2+, La3+, and D-600 and even DOC in the above concentrations inhibited PVP but increased the PVP ratio. High concentrations of DOC (greater than 1 mM), which disrupt SR, strongly inhibited PVP. It is concluded that the calcium channel plays a more prominent role in spontaneous contractions than in PVP in guinea pig atria. PVP is suggested to be generated by excessive triggered release of Ca2+ from SR leading to a marked increase in [Ca2+]i. The calcium channel and the calcium trapped in the glycocalyx also play significant roles in PVP.  相似文献   

19.
Histamine-induced inositol phosphate accumulation in type-2 astrocytes   总被引:4,自引:0,他引:4  
Histamine elicited dose-dependent accumulation of [3H]inositol phosphates in type-2 astrocytes, but not in type-1 astrocytes. The ED50 was about 2.4 x 10(-6) M and the maximal response was obtained at 10(-4) M. This response was dose-dependently inhibited by H1-antagonists, mepyramine and D- and L-chlorpheniramine. Furthermore, D- and L-chlorpheniramine showed stereoselectivity in the inhibition. On the other hand, an H2-antagonist, famotidine, and an H3-antagonist, thioperamide, did not inhibit the response. These results indicate that histamine stimulates accumulation of inositol phosphates in type-2 astrocytes via H1-receptors.  相似文献   

20.
Ca influx has been studied in squid axons under internal dialysis control. In axons dialyzed with "normal" physiological conditions (Nai = 40-50 mM, Cai2+ = 0.06-0.1 microM, ATP = 2 mM, Ki = 310 mM), 70% of the resting Ca influx is sensitive to external TTX (K0.5 congruent to 5 nM), 20% of it can be accounted by the reversal of the Na-Ca exchange, and the remaining fraction (10%) is insensitive to TTX, D-600, and Nai. The Ca antagonic drug D-600 (50-100 microM) has an inhibitory effect on the resting Ca influx. This compound was found to affect both the TTX sensitive and the Nai-dependent Ca influx components. In the presence of Nai and ATP, Cai2+ activates the carrier mediated Ca entry (Nai-dependent Ca influx). Most of the activation occurs in the submicromolar range of Cai2+ concentrations (K0.5 congruent to 0.6 microM). In the absence of Nai and/or ATP, no activation of Ca influx by Cai2+ was found up to about 5 microM Cai2+. Prolonged depolarization with high Ko causes an increase in Ca influx sustained for long time (minutes). Depolarizing the axons by removing Ki causes the same effect. This depolarization-induced Ca entry was only observed in axons containing Nai. In the absence of Nai, Ca influx decreases with increasing Ko. The activation of the carrier mediated Ca entry (electrogenic Na/Ca exchange) by membrane depolarization was found to be markedly dependent on the magnitude of Ca2+ i. Increasing the magnitude of Ca2+ i from 0.1 to 0.6 microM causes a ten fold increase in the extra Ca influx induced by a K-depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号