首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Papillomaviruses are small DNA viruses that infect epithelial tissues and cause warts. Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The E6 and E7 oncogenes are the only genes consistently expressed in HPV-positive cervical cancer cells. Cottontail rabbit papillomavirus (CRPV) induces papillomas and carcinomas on cottontail and domestic rabbits and provides an excellent animal model of HPV infection and vaccine development. CRPV encodes three transforming proteins; LE6, SE6, and E7. Each of these proteins is required for papilloma formation. Like HPV E7, the CRPV E7 protein binds to the tumor suppressor pRB. In contrast, unlike HPV E6, the CRPV E6 proteins do not bind the tumor suppressor p53. Although more than a dozen cellular proteins have been identified as HPV E6 interacting proteins, nothing is known about the cellular interacting proteins of CRPV E6s. Here we describe the association of CRPV E6s with hDlg/SAP97, the mammalian homolog of the Drosophila discs large tumor suppressor protein. HPV E6 has previously shown to bind and target hDlg/SAP97 for degradation. Our results demonstrate that both LE6 and SE6 interact with hDlg/SAP97, although their association does not lead to the degradation of hDlg/SAP97. The PDZ domains of hDlg were shown to be sufficient for interaction with CRPV E6 proteins while the C-terminus of CRPV E6 is essential for the interaction with hDlg. The association of hDlg with SE6 may be important but not sufficient for the transformation of NIH 3T3 cells by SE6. Importantly, a CRPV SE6 mutant defective for papilloma formation did not interact with hDlg. These results suggest that interaction with hDlg/SAP97 plays a role in the biological function of CRPV E6s.  相似文献   

2.
Cottontail rabbit papillomavirus induces on cottontail and domestic rabbits papillomas which progress at a high frequency to carcinoma. The virus encodes three transforming proteins; one is translated from open reading frame (ORF) E7 and binds the retinoblastoma protein, and two, LE6 and SE6, are translated from the first and second ATGs of ORF E6, respectively. Here we show that neither of the E6 proteins coprecipitated with p53 in vitro, nor did they bind to a recently identified E6-binding protein (J. J. Chen, C. E. Reid, V. Band, and E. Androphy, Science 269:529-531, 1995). This protein was shown to bind to the E6 proteins of the high-risk human papillomairus types 16 and 18 but not to the low-risk human papillomavirus types VI and II. In-frame deletions cloned into the pZipNeo vector were used to identify structural features of SE6 and LE6 important for transformation of NIH 3T3 cells. Three deletions covering the amino-terminal half of SE6 did not transform cells. In two of the three deletions, two Cys-X-X-Cys motifs were deleted, each deletion preventing the formation of one of the potential small Zn fingers of SE6. Among the LE6 deletions, only one had a reduced transformation efficiency, while seven transformed cells at least as efficiently as wild-type LE6. In each of three of these seven mutants, two Cys-X-X-Cys motifs were deleted. None of the three amino acid deletions which abolished transformation by SE6 reduced transformation by LE6. Furthermore, transformation did not correlate with the level of SE6 or LE6 proteins detectable. ORF E8 colinear with ORF E6, which could generate a 50-amino-acid protein with a hydrophobic segment, did not transform cells when cloned into the pZipNeo vector. However, mutation of the E8 ATG, which did not alter the amino acid sequence of LE6, increased transformation by LE6 without affecting the level of LE6 expression. The data suggest that transformation by the E6 proteins is not mediated by interfering with p53 function or through binding to the E6-binding protein. Furthermore, different structural features are important to maintain transformation functions and protein stability of LE6 and SE6. Finally, E8 seems not to be a transforming protein but rather appears to modulate transformation bv LE6.  相似文献   

3.
Expression of the papillomavirus E4 protein correlates with the onset of viral DNA amplification. Using a mutant cottontail rabbit papillomavirus (CRPV) genome incapable of expressing the viral E4 protein, we have shown that E4 is required for the productive stage of the CRPV life cycle in New Zealand White and cottontail rabbits. In these lesions, E4 was not required for papilloma development, but the onset of viral DNA amplification and L1 expression were abolished. Viral genome amplification was partially restored when mutant genomes able to express longer forms of E4 were used. These findings suggest that efficient amplification of the CRPV genome is dependent on the expression of a full-length CRPV E4 protein.  相似文献   

4.
5.
6.
7.
X Wu  W Xiao    J L Brandsma 《Journal of virology》1994,68(9):6097-6102
The present study used the cottontail rabbit papillomavirus DNA-rabbit system to evaluate whether the regulatory genes E1 and E2 and the transforming gene E6 are required for papilloma formation. Frameshift mutations were generated in the individual genes in the context of a full-length cottontail rabbit papillomavirus genome, and the mutant DNAs were intradermally inoculated into domestic rabbits. None of the mutants induced papillomas. Marker rescue experiments confirmed that the defects were due to mutations that we deliberately introduced. Marker rescue also confirmed our previous report that the upstream region of E7 around position 9 was critical for papilloma induction. These results demonstrate that the E1 and E2 regulatory genes as well as the E6 and E7 transforming genes are each required for papilloma formation. Each gene may provide molecular targets for therapeutic intervention.  相似文献   

8.
Human papillomavirus (HPV) vaccines have the potential to prevent cervical cancer by preventing HPV infection or treating premalignant disease. We previously showed that DNA vaccination with the cottontail rabbit papillomavirus (CRPV) E6 gene induced partial protection against CRPV challenge and that the vaccine's effects were greatly enhanced by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF). In the present study, two additional strategies for augmenting the clinical efficacy of CRPV E6 vaccination were evaluated. The first was to fuse a ubiquitin monomer to the CRPV E6 protein to enhance antigen processing and presentation through the major histocompatibility complex class I pathway. Rabbits vaccinated with the wild-type E6 gene plus GM-CSF or with the ubiquitin-fused E6 gene formed significantly fewer papillomas than the controls. The papillomas also required a longer time to appear and grew more slowly. Finally, a significant proportion of the papillomas subsequently regressed. The ubiquitin-fused E6 vaccine was significantly more effective than the wild-type E6 vaccine plus GM-CSF priming. The second strategy was to vaccinate with multiple CRPV early genes to increase the breadth of the CRPV-specific response. DNA vaccines encoding the wild-type CRPV E1-E2, E6, or E7 protein were tested alone and in all possible combinations. All vaccines and combinations suppressed papilloma formation, slowed papilloma growth, and stimulated subsequent papilloma regression. Finally, the two strategies were merged and a combination DNA vaccine containing ubiquitin-fused versions of the CRPV E1, E2, and E7 genes was tested. This last vaccine prevented papilloma formation at all challenge sites in all rabbits, demonstrating complete protection.  相似文献   

9.
We previously reported the partial characterization of two cottontail rabbit papillomavirus (CRPV) subtypes with strikingly divergent E6 and E7 oncoproteins. We report now the complete nucleotide sequences of these subtypes, referred to as CRPVa4 (7,868 nucleotides) and CRPVb (7,867 nucleotides). The CRPVa4 and CRPVb genomes differed at 238 (3%) nucleotide positions, whereas CRPVa4 and the prototype CRPV differed by only 5 nucleotides. The most variable region (7% nucleotide divergence) included the long regulatory region (LRR) and the E6 and E7 genes. A mutation in the stop codon resulted in an 8-amino-acid-longer CRPVb E4 protein, and a nucleotide deletion reduced the coding capacity of the E5 gene from 101 to 25 amino acids. In domestic rabbits homozygous for a specific haplotype of the DRA and DQA genes of the major histocompatibility complex, warts induced by CRPVb DNA or a chimeric genome containing the CRPVb LRR/E6/E7 region showed an early regression, whereas warts induced by CRPVa4 or a chimeric genome containing the CRPVa4 LRR/E6/E7 region persisted and evolved into carcinomas. In contrast, most CRPVa, CRPVb, and chimeric CRPV DNA-induced warts showed no early regression in rabbits homozygous for another DRA-DQA haplotype. Little, if any, viral replication is usually observed in domestic rabbit warts. When warts induced by CRPVa and CRPVb virions and DNA were compared, the number of cells positive for viral DNA or capsid antigens was found to be greater by 1 order of magnitude for specimens induced by CRPVb. Thus, both sequence variation in the LRR/E6/E7 region and the genetic constitution of the host influence the expression of the oncogenic potential of CRPV. Furthermore, intratype variation may overcome to some extent the host restriction of CRPV replication in domestic rabbits.  相似文献   

10.
In the cottontail rabbit papillomavirus (CRPV)-rabbit system, recombinant CRPV DNA can induce papillomas. This investigation was undertaken to evaluate whether the E5 open reading frame (ORF) of CRPV is required for papilloma formation. The CRPV genome we utilized, CRPV-WA, was sequenced in the E5 region and was found to contain one deletion, two insertions, and one transition mutation compared with CRPV-KS, the CRPV genome that has been fully sequenced. Despite these differences, an intact E5 ORF is preserved, supporting the notion that this gene may serve a biological function. One frameshift and two in-frame mutations were constructed in the small region of the 5' end of the E5 ORF that follows the E2 stop codon and precedes the L2 ORF. Several hundred rabbit skin sites were inoculated with each DNA preparation with a jet injector to test the ability of three CRPV E5 mutant DNAs to induce papillomas. In vivo results showed that each of the mutants induced papillomas, and biochemical analysis demonstrated that the E5 mutations present in DNA inocula were retained in the papillomas. The frequency of papilloma formation, however, was generally lower with each of the CRPV E5 mutants than with wild-type CRPV DNA, particularly so for the E5 frameshift mutant, suggesting that although the recognized E5 ORF is not required in domestic rabbits for the induction of papillomas by CRPV DNA, it may facilitate their formation.  相似文献   

11.
The cottontail rabbit papillomavirus (CRPV) a and b subtypes display a conserved E8 open reading frame encoding a 50-amino-acid hydrophobic protein, with structural similarities to the E5 transmembrane oncoprotein of genital human PVs (HPVs). CRPV E8 has been reported to play a role in papilloma growth but not to be essential in papilloma formation. Here we report that the knockout of E8 start codon almost prevented wart induction upon biobalistic inoculation of viral DNA onto rabbit skin. The scarce warts induced showed very slow growth, despite sustained expression of E6 and E7 oncogenes. This points to an essential role of E8 in disturbing epidermal homeostasis. Using a yeast two-hybrid screen, we found that E8 interacted with the zinc transporter ZnT1, protocadherin 1 (PCDH1), and AHNAK/desmoyokin, three proteins as yet unrelated to viral pathogenesis or cell transformation. HPV16 E5 also interacted with these proteins in two-hybrid assay. CRPV E8 mainly localized to the Golgi apparatus and the early endosomes of transfected keratinocytes and colocalized with ZnT1, PCDH1, and AHNAK. We showed that ZnT1 and PCDH1 formed a complex and that E8 disrupted this complex. CRPV E8, like HPV16 E5, increased epidermal growth factor (EGF)-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and both the EGF-dependent and the EGF-independent activity of activating protein-1 (AP-1). Competition experiments with a nonfunctional truncated ZnT1 protein showed that E8-ZnT1 interaction was required for AP-1 activation. Our data identify CRPV E8 as a key player in papilloma induction and unravel novel cellular targets for inducing the proliferation of keratinocytes.  相似文献   

12.
The cottontail rabbit papillomavirus (CRPV)-rabbit model has been used in several studies for testing prophylactic and therapeutic papillomavirus vaccines. Earlier observations had shown that the CRPV nonstructural genes E1, E2, and E6 induced strong to partial protective immunity against CRPV infection. In this study, we found that CRPV E8 immunization eliminated virus-induced papillomas in EIII/JC inbred rabbits (100%) and provided partial protection (55%) against virus challenge in outbred New Zealand White rabbits. CRPV-E8 is a small open reading frame, coding for a 50-amino-acid protein, that is colinear with the CRPV E6 gene and has features similar to those of the bovine papillomavirus and human papillomavirus E5 genes. Papillomas that grew on E8-vaccinated outbred rabbits were significantly smaller than those on vector-vaccinated rabbits (P < 0.01; t test). Delayed-type hypersensitivity skin tests showed that some of the E8-vaccinated rabbits had positive responses to E8-specific peptides.  相似文献   

13.
Persistent human papillomavirus (HPV)-associated benign and malignant lesions are a major cause of morbidity and mortality worldwide. Vaccination against HPV early proteins could provide an effective means of treating individuals with established infections. Recombinant vesicular stomatitis virus (VSV) vectors have been used previously to elicit strong humoral and cellular immune responses and develop prophylactic vaccines. We have shown that VSV vectors also can be used to elicit therapeutic immunity in the cottontail rabbit papillomavirus (CRPV)-rabbit model of high-risk HPV infection. In the present study, three new VSV vectors expressing the CRPV E1, E2, or E7 protein were produced and compared to the previously generated VSV-E6 vector for therapeutic efficacy. To determine whether vaccine efficacy could be augmented by simultaneous vaccination against two CRPV proteins, the four vaccines were delivered individually and in all possible pairings to rabbits 1 week after CRPV infection. Control rabbits received the recombinant wild-type VSV vector or medium only. Cumulative papilloma volumes were computed for analysis of the data. The analyses showed that VSV-based vaccination against the E1, E2, E6, or E7 protein significantly reduced papilloma volumes relative to those of the controls. Furthermore, VSV-based CRPV vaccination cured all of the papillomas in 5 of 30 rabbits. Of the individual vaccines, VSV-E7 was the most effective. The VSV-E7 vaccine alone was the most effective, as it reduced cumulative papilloma volumes by 96.9% overall, relative to those of the controls, and ultimately eliminated all of the disease in all of the vaccinees. Vaccine pairing was not, however, found to be beneficial, suggesting antigenic competition between the coexpressed CRPV proteins. These preclinical results, obtained in a physiologically relevant animal model of HPV infection, demonstrate that VSV vectors deserve serious consideration for further development as therapeutic antitumor vaccines.  相似文献   

14.
Human papillomavirus type 16 (HPV16) E6 and E7 are selectively retained and expressed in HPV16-associated human genital tumors. E6 is active in several cell culture assays, including transformation of NIH 3T3 cells, trans activation of the adenovirus E2 promoter, and cooperation with E7 to immortalize normal human keratinocytes. Biochemically, the HPV16 E6 protein has been shown to bind to tumor suppressor protein p53 in vitro and induce its degradation in a rabbit reticulocyte lysate. To examine the relationship between the various biological activities of E6 and inactivation of p53, we tested the abilities of dominant negative mutants of p53 to substitute functionally for E6 in the three cell culture assays. While wild-type p53 inhibited keratinocyte proliferation, both mouse and human mutant p53s, in conjunction with E7, increased proliferation of the keratinocytes, resulting in generation of immortalized lines. However, in contrast to E6, mutant p53 was unable to induce transformation or trans activate the adenovirus E2 promoter in NIH 3T3 cells. These results suggest that inactivation of wild-type p53 is necessary for HPV-induced immortalization of human keratinocytes and that different or additional activities are required for E6-dependent transformation and trans activation of NIH 3T3 cells.  相似文献   

15.
16.
Three transgenic rabbit lines that express a well-characterized human major histocompatibility complex class I (MHC-I) gene (HLA-A2.1) have been established. All three lines carry the HLA-A2.1 heavy chain and are able to pass the transgene to their offspring with both the outbred and the inbred EIII/JC genetic background. HLA-A2.1 colocalizes exclusively with rabbit MHC-I on the cell surfaces. These HLA-A2.1 transgenic rabbits demonstrated infection patterns similar to those found after cottontail rabbit papillomavirus (CRPV) challenge when compared with results in normal rabbits, although higher regression rates were found in HLA-A2.1 transgenic rabbits. Because the CRPV genome can accommodate significant modifications, the CRPV/HLA-A2.1 rabbit model has the potential to be used to screen HLA-A2.1-restricted immunogenic epitopes from human papillomaviruses in the context of in vivo papillomavirus infection.  相似文献   

17.
18.
Malignant progression is a life-threatening consequence of human papillomavirus-associated lesions. In this study, we tested the efficacy of papillomavirus early-gene-based vaccines for prevention of carcinoma development of papillomavirus-induced skin papillomas on rabbits. Rabbit skin papillomas were initiated by infection with cottontail rabbit papillomavirus (CRPV). The papillomas were allowed to grow for 3 months without any treatment intervention. Rabbits were then immunized by gene gun-mediated intracutaneous administration of four DNA plasmids encoding CRPV E1, E2, E6, and E7 genes, respectively. All eight control rabbits receiving vector alone developed invasive carcinoma within 8 to 13 months. In contrast, only two of eight vaccinated rabbits developed carcinoma at 12 and 15 months, respectively. Papilloma growth was suppressed in the majority of vaccinated rabbits but not completely eradicated. These results indicate that gene gun-mediated immunization with papillomavirus early genes may be a promising strategy for prevention of malignant progression of human papillomavirus-associated lesions in humans.  相似文献   

19.
20.
We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8(+) T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82-90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition, vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82-90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号