首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to purify variant IGF II peptides from human placenta, we have developed a purification procedure combining heparin affinity chromatography and cation-exchange, reversed-phase and size-exclusion HPLC. Two peptides were purified, both having apparent Mr values of ca. 7300 Da as evaluated by SDS-PAGE. N-Terminal sequencing revealed IGF II and an IGF II variant in which Ser29 was replaced by the tetrapeptide Arg-Leu-Pro-Gly. The final yield of variant IGF II was about eight-fold lower than that of IGF II. Both pure peptides were functionally active as they bound to type I and type II IGF receptors from ovine and human placental membranes, as determined by crosslinking experiments and displacement curve studies.  相似文献   

2.

Background

Insulin-like growth factor-II (IGF-II) promotes cell proliferation and survival and plays an important role in normal fetal development and placental function. IGF-II binds both the insulin-like growth factor receptor (IGF-1R) and insulin receptor isoform A (IR-A) with high affinity. Interestingly both IGF-II and the IR-A are often upregulated in cancer and IGF-II acts via both receptors to promote cancer proliferation. There is relatively little known about the mechanism of ligand induced activation of the insulin (IR) and IGF-1R. The recently solved IR structure reveals a folded over dimer with two potential ligand binding pockets arising from residues on each receptor half. Site-directed mutagenesis has mapped receptor residues important for ligand binding to two separate sites within the ligand binding pocket and we have recently shown that the IGFs have two separate binding surfaces which interact with the receptor sites 1 and 2.

Methodology/Principal Findings

In this study we describe a series of partial IGF-1R and IR agonists generated by mutating Glu12 of IGF-II. By comparing receptor binding affinities, abilities to induce negative cooperativity and potencies in receptor activation, we provide evidence that residue Glu12 bridges the two receptor halves leading to receptor activation.

Conclusions/Significance

This study provides novel insight into the mechanism of receptor binding and activation by IGF-II, which may be important for the future development of inhibitors of its action for the treatment of cancer.  相似文献   

3.
To better define the biologic function of the type II insulin-like growth factor (IGF) receptor, we raised a blocking antiserum in a rabbit by immunizing with highly purified rat type II IGF receptor. On immunoblots of crude type II receptor preparations, only bands corresponding to the type II IGF receptor were seen with IgG 3637, indicating that the antiserum was specific for the type II receptor. Competitive binding and chemical cross-linking experiments showed that IgG 3637 blocked binding of 125I-IGF-II to the rat type II IGF receptor, but did not block binding of 125I-IGF-I to the type I IGF receptor, nor did IgG 3637 block binding of 125I-insulin to the insulin receptor. In addition, IgG 3637 did not inhibit the binding of 125I-IGF-II to partially purified 150- and 40-kDa IGF carrier proteins from adult and fetal rat serum. L6 myoblasts have both type I and type II IGF receptors. IGF-I was more potent than IGF-II in stimulating N-methyl-alpha-[14C]aminoisobutyric acid uptake, 2-[3H]deoxyglucose uptake, and [3H]leucine incorporation into cellular proteins. IgG 3637 did not stimulate either 2-[3H]deoxyglucose uptake, N-methyl-alpha-[14C]aminoisobutyric acid uptake, or [3H]leucine incorporation into protein when tested alone. Furthermore, IgG 3637 at concentrations sufficient to block type II receptors under conditions of the uptake and incorporation experiments did not cause a shift to the right of the dose-response curve for stimulation of these biologic functions by IGF-II. We conclude that the type II IGF receptor does not mediate IGF stimulation of N-methyl-alpha-[14C]aminoisobutyric acid and 2-[3H]deoxyglucose uptake and protein synthesis in L6 myoblasts; presumably, the type I receptor mediates these biologic responses. The anti-type II receptor antibody inhibited IGF-II degradation in the media by greater than 90%, suggesting that the major degradative pathway for IGF-II in L6 myoblasts utilizes the type II IGF receptor.  相似文献   

4.
The membrane receptor for insulin-like growth factor II (IGF II) has been purified to near homogeneity from rat placenta by chromatography of crude plasma membranes solubilized in Triton X-100 on agarose-immobilized IGF II. Elution of the IGF II receptor from the matrix at pH 5.0 in the presence of 1.5 M NaCl resulted in a receptor purification of 1100-fold from isolated plasma membranes, or 340-fold from the Triton extract with an average yield of about 50% in five separate purifications. Analysis of 125I-IGF II binding to the solubilized receptor in the Triton extract and in purified form by the method of Scatchard demonstrated no change in receptor affinity (Kd = 0.72 nM). Sodium dodecyl sulfate electrophoresis of the purified receptor showed one major band at Mr = 250,000 with only minor contamination. Affinity labeling of the receptor in isolated placenta membranes and in purified form using 125I-IGF II and the cross-linking agent disuccinimidyl suberate resulted in covalent labeling of only the Mr = 250,000 band. Such labeling was abolished by unlabeled IGF II but was unaffected by insulin, consistent with the previously reported specificity of IGF II receptor (Massague, J., and Czech, M.P. (1982) J. Biol. Chem. 257, 5038-5045). These results establish a one step affinity method for the purification of the type II IGF receptor that is rapid and highly efficient.  相似文献   

5.
Radioimmunoassay for insulin-like growth factor II (IGF-II)   总被引:1,自引:0,他引:1  
Insulin-like growth factor II (IGF-II) levels in human plasma were measured in physiological and pathological conditions by radioimmunoassay (RIA) with biosynthetic IGF-II. This RIA was specific for IGF-II and cross-reactivity with IGF-I was 1%. The sensitivity was 15 pg/tube with 50% displacement at 50 pg/tube. The intra- and inter-assay coefficients of variation for IGF-II were 6.3 and 9.3%, respectively. The plasma IGF-II levels in normal adults, patients with hypopituitarism and patients with active acromegaly were 589.6 +/- 15.8, 800.9 +/- 45.6 and 330.3 +/- 24.3 ng/ml, respectively. After human growth hormone (hGH) treatment in hypopituitarism, IGF-II slightly increased, but not significantly. After adenomectomy in patients with acromegaly, IGF-II significantly decreased. These data indicate that IGF-II concentrations in plasma were partially GH dependent. This GH dependency was less than that of IGF-I. IGF-II was low in patients with anorexia nervosa and with liver cirrhosis and high in patients with renal failure. In two cases with extrapancreatic tumor-associated hypoglycemia, plasma IGF-II was increased to 1123.8 and 843.5 ng/ml, and returned to normal after tumor resection. These data showed that IGF-II was partly dependent on GH and nutritional conditions and that IGF-II was the most likely cause of some cases of hypoglycemia with extrapancreatic tumor. This specific and sensitive RIA of IGF-II would be useful in evaluating its physiological and pathological role in plasma and tissue.  相似文献   

6.
Insulin-like growth factor (IGF) binding to the type 1 IGF receptor (IGF1R) elicits mitogenic effects, promotion of differentiation and protection from apoptosis. This study has systematically measured IGF1R binding affinities of IGF-I, IGF-II and 14 IGF analogues to a recombinant high-affinity form of the IGF1R using BIAcore technology. The analogues assessed could be divided into two groups: (a) those designed to investigate binding of IGF-binding protein, which exhibited IGF1R-binding affinities similar to those of IGF-I or IGF-II; (b) those generated to probe IGF1R interactions with greatly reduced IGF1R-binding affinities. The relative binding affinities of IGF-I analogues and IGF-I for the IGF1R determined by BIAcore analysis agreed closely with existing data from receptor-binding assays using cells or tissue membranes, demonstrating that BIAcore technology is a powerful tool for measuring affinities of IGFs for IGF1R. In parallel studies, IGF1R-binding affinities were related to ability to protect against serum withdrawal-induced apoptosis in three different assays including Hoechst 33258 staining, cell survival, and DNA fragmentation assays using the rat pheochromocytoma cell line, PC12. In this model system, IGF-I and IGF-II at low nanomolar concentrations are able to prevent apoptosis completely. We conclude that ability to protect against apoptosis is directly related to ability to bind the IGF1R.  相似文献   

7.
BALB/c mice were immunized with rIGF-II receptors purified from 18-54, SF cells by chromatography of solubilized receptors over agarose-immobilized rIGF-II. Two fusions of splenic lymphocytes with FO mouse myeloma cells yielded 27 stable hybrids which were positive by ELISA. Cloning of seven of these hybrids yielded 30 positive clones by ELISA. At least seven of these clones (minimum of one from each parent hybrid) were capable of specifically immunoprecipitating the rIGF-II receptor.  相似文献   

8.
Using affinity cross-linking techniques, we report the presence of type I IGF and type II IGF receptors in Madin-Darby canine kidney cells, a line of cells lacking insulin receptors. The IGF receptors were further characterized by competition binding studies and found to be similar to IGF receptors in other tissue types. In Madin-Darby canine kidney cells, the type I IGF receptor binds IGF-I greater than IGF-II greater than insulin and the type II IGF receptor binds IGF-II and IGF-I with approximately the same affinity, but does not bind insulin.  相似文献   

9.
The type I IGF receptor from human placental membranes was purified to near homogeneity by affinity chromatography on IGF I-Sepharose. SDS-polyacrylamide gel electrophoresis of the affinity purified type I IGF receptor demonstrated a high molecular weight protein with Mr greater than or equal to 300,000 under non-reducing conditions. After reduction with 2-mercaptoethanol two protein bands were found of Mr = 125,000 and 95,000, representing the alpha- and beta-subunits of the receptor molecule, respectively. A co-purification of the insulin receptor through the IGF I-affinity column could be avoided by a preincubation step with insulin.  相似文献   

10.
Objective: This study explores the synergistic effect of cardiomyoblast apoptosis induced by angiotensin II (Ang II) and Insulin-like growth factor (IGF)-I resistance, and elucidates the role of IGF-II via IGF-II receptor (R) and calcineurin pathways in apoptosis induced by Ang II and IGF-I resistance. Methods: Apoptosis of cultured cardiomyoblast H9c2 cells was assessed by DNA fragmentation on agarose gel electrophoresis, nuclear condensation stained with DAPI, and Western blot analysis of pro-apoptotic Bad and cytochrome c in various combinations of control, Ang II, antisense IGF (I or II), IGF (I or II) antibody, IGF (I or II) receptor (R) antibody, or calcineurin inhibitor (Cyclosporine A, (CsA)). Results: We found the following: (1) The combination of Ang II and IGF-I deficiencies had a synergistic effect on apoptosis, confirmed by DNA fragmentation, nuclei condensation, and increases in such pro-apoptotic proteins as Bad, cytochrome c, caspase 9, and caspase 3 in H9c2 cells. (2) IGF-II and IGF-IIR protein products were increased by antisense IGF-I and IGF-I resistance, but these IGF-II protein products were not affected by sense IGF-I and non-specific antibody IgG in H9c2 cells. (3) The alteration of Bad protein level and the release of cytochrome c, both induced by treatments containing combinations of Ang II and antisense IGF-I, IGF-I antibody or IGF-IR antibody, were inhibited by IGF-II antibody. (4) DNA fragmentation, Bad, and cytochrome c which was induced by treatments combining IGF-IR antibody with Ang II or combining IGF-IR antibody with IGF-II were remarkably attenuated by CsA. Conclusion: IGF-I deficiency and/or IGF-IR resistance induced apoptosis in cardiomyoblast cells. The apoptosis, which might have been caused by the upregulation of IGF-II and IGF-IIR genes possibly activated the downstream calcineurin pathway, was synergistically augmented by Ang II. The last two authors contributed equally.  相似文献   

11.
Insulin-like growth factor binding proteins (IGFBP) can inhibit or accentuate the mitogenic activities of insulin-like growth factor 1 (IGF-1) depending upon the experimental model employed. Inhibitory effects may be attributed to sequestration of IGF-1 onto IGFBP rather than the type I IGF receptor. We have demonstrated that the presence of IGFBP in a simple equilibrium binding assay significantly reduces the total amount of IGF-1 bound to the type I IGF receptor and increases the IC50 for IGF-1 binding. On the basis of such an experiment, performed at equilibrium, IGFBP should reduce the mitogenic activity of IGF-1. Recent work has demonstrated an inverse correlation between the dissociation rate of insulin-like molecules from their receptors and their mitogenic activity. It has also been suggested that the increased rate of dissociation of insulin and IGF-1 from their receptors at increased ligand concentrations serves as a ‘dampening’ mechanism to decrease mitogenic signalling. We have demonstrated increased rates of dissociation of IGF-1 from the type I IGF receptor with increasing concentrations of IGF-1. Furthermore, IGFBP-3 inhibits the acceleration of dissociation rates due to increased IGF-1 levels. Thus, under receptor saturating conditions IGFBP-3 may act to increase mitogenesis by increasing the residence time of individual molecules of IGF-1 upon the type I IGF receptor.  相似文献   

12.
13.
The regulated expression of mannose 6-phosphate/insulin-like growth factor II (M6P/IGF II) receptors in plasma membranes has previously been shown to be accompanied by marked changes in the phosphorylation state of the receptors (Corvera, S., Folander, K., Clairmont, K. B., and Czech, M. P. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 7567-7571). In the present study we show that protein phosphatase 2A dephosphorylates the human M6P/IGF II receptor in vitro. Incubation of human fibroblasts with okadaic acid, a specific inhibitor of this phosphatase, resulted in a depletion of M6P/IGF II receptors at the cell surface without affecting their internalization kinetics. The phosphorylation state of the remaining cell surface receptors was 3-fold increased. Thus, the endocytosis rate of M6P/IGF II receptors appears to be unaltered by increased phosphorylation. While the decreased cell surface expression of receptors was reversible upon removal of okadaic acid the IGF II-induced redistribution of M6P/IGF II receptors to the plasma membrane (Braulke, T., Tippmer, S., Neher, E., and von Figura, K. (1989) EMBO J. 8, 681-686) was irreversibly inhibited by the phosphatase inhibitor. Receptor redistribution in response to protein kinase C activation was not affected by okadaic acid. These results suggest that the cell surface expression of M6P/IGF II receptor can be regulated by phosphatase-dependent and -independent pathways. In addition, the phosphorylation state and the steady-state cell surface number of transferrin receptors were not affected by okadaic acid, whereas it impaired the IGF II-stimulated receptor redistribution similarly as for M6P/IGF II receptors. The data indicate that okadaic acid-sensitive protein phosphatases may play a general role in terms of IGF II-modulated receptor recycling.  相似文献   

14.
Active search for candidate genes whose polymorphisms are associated with human cognitive functions has been in progress in the past years. The study focused on the role that the insulin-like growth factor II (IGF2) gene may play in the variation of cognitive processes related to executive functions. The ApaI polymorphism of the IGF2 gene was tested for association with selective attention during visual search, working memory/mental control, and semantic verbal fluency in a group of 182 healthy individuals. The ApaI polymorphism was associated with the general cognitive index and selective attention measure. Carriers of genotype AA displayed higher values of the two parameters than carriers of genotype GG. It was assumed that the ApaI polymorphism of the IGF2 gene influences the human cognitive functions, acting possibly via modulation of the IGF-II level in the central nervous system.  相似文献   

15.
With the aim to produce insulin-like growth factors (IGF) with enhanced specificity for the type 1 or type 2 IGF receptors, three mutants of IGF II have been prepared and expressed in NIH-3T3 cells. IGF II mutated at Tyr27 to Leu and Glu showed a 25- and 54-fold decrease in affinity for the type 1 IGF receptor and a 3.4- and 9.2-fold decrease in affinity for the type 2 IGF receptor. IGF II mutated at Phe48 to Glu showed a 18-fold decrease in affinity for the type 2 IGF receptor and a 2.8-fold decrease in affinity for the type 1 IGF receptor. These affinities were measured in radioreceptor assays using type 1 or 2 IGF receptor overexpressing cells. Data obtained on receptor cross-linking and thymidine incorporation assays confirmed the results of the radioreceptor assays. It is concluded that mutations of Tyr27 preferentially decrease binding to the type 1 IGF receptor and of Phe48 to the type 2 IGF receptor, either by the loss of a residue involved in receptor binding or by preferentially destabilizing the region involved in receptor binding.  相似文献   

16.
IGFs are important mediators of growth. IGF binding proteins (IGFBPs) 1-6 regulate IGF actions and have IGF-independent actions. The C-terminal domains of IGFBPs contribute to high-affinity IGF binding and modulation of IGF actions and confer some IGF-independent properties, but understanding how they achieve this has been constrained by the lack of a three-dimensional structure. We therefore determined the solution structure of the C-domain of IGFBP-6 using nuclear magnetic resonance (NMR). The domain consists of a thyroglobulin type 1 fold comprising an alpha-helix followed by a loop, a three-stranded antiparallel beta-sheet incorporating a second loop, and finally a disulfide-bonded flexible third loop. The IGF-II binding site on the C-domain was identified by examining NMR spectral changes upon complex formation. It consists of a largely hydrophobic surface patch involving the alpha-helix, the first beta-strand, and the first and second loops. The site was confirmed by mutagenesis of several residues, which resulted in decreased IGF binding affinity. The IGF-II binding site lies adjacent to surfaces likely to be involved in glycosaminoglycan binding of IGFBPs, which might explain their decreased IGF affinity when bound to glycosaminoglycans, and nuclear localization. Our structure provides a framework for understanding the roles of IGFBP C-domains in modulating IGF actions and conferring IGF-independent actions, as well as ultimately for the development of therapeutic IGF inhibitors for diseases including cancer.  相似文献   

17.
Insulin-like growth factor-II (IGF-II), the predominant form of IGF in fetal and neonatal serum and tissues, is found in vivo complexed with IGF-binding proteins. One of these binding proteins, IGFBP-2, is present at high levels in fetal rat plasma and binds both IGF-I and IGF-II with high affinity. We here have used in situ hybridization to compare the distribution of IGFBP-2 mRNA with that of IGF-II mRNA in embryonic day 13.5-15 rat embryos. The spatial patterns of IGF-II and IGFBP-2 expression in the fetal trunk were distinct and, in general, nonoverlapping. Most mesoderm derivatives that express IGF-II at high levels contained little, if any, IGFBP-2 mRNA. Instead, IGFBP-2 mRNA was expressed at high levels in many cell types derived from ectoderm and endoderm. The expression of IGFBP-2 mRNA in the central nervous system (CNS) during this developmental period was examined in particular detail. The three most prominent sites of IGFBP-2 expression in the CNS were comprised of cells with nonneuronal phenotypes: 1) the epithelium of the choroid plexus, a tissue that produces cerebrospinal fluid; 2) the floor plate, an area that can guide axonal outgrowth from commissural neurons of the spinal cord in vitro; and 3) the infundibulum, the progenitor of the posterior pituitary that is believed to influence differentiation of the adjacent intermediate pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have used site-directed mutagenesis of a synthetic gene for insulin-like growth factor (IGF) I to prepare three analogs in which specific residues in the A region are replaced with the corresponding residues in the A chain of insulin. The analogs are [Ile41, Glu45, Gln46, Thr49, Ser50, Ile51, Ser53, Tyr55, Gln56]IGF I (A chain mutant), in which residue 41 is changed from threonine to isoleucine and residues 42 to 56 of the A region are replaced, [Thr49, Ser50, Ile51]IGF I, and [Tyr55, Gln56]IGF I. These analogs are all equipotent to IGF I at the type 1 IGF receptor in human placental membranes, and in stimulating the incorporation of [3H]thymidine into DNA in the rat vascular smooth muscle cell line A10. However, the A chain mutant and [Thr49, Ser50, Ile51]IGF I have greater than 20-fold lower relative affinity for the type 2 IGF receptor of rat liver membranes, respectively. In contrast, [Tyr55, Gln56]IGF I has 7-fold higher affinity than IGF I for the type 2 IGF receptor. Residues 49, 50, and 51 in IGF I are Phe-Arg-Ser and are strictly conserved in IGF II. Residues 55 and 56 of IGF I and the corresponding residues in IGF II are Arg-Arg and Ala-Leu, respectively. Thus, the presence of the charged residues at these positions in IGF I appears to be responsible, in part, for the lower affinity of IGF I for the type 2 IGF receptor. In addition to the alterations in affinity for the type 2 IGF receptor, the A chain mutant has a 7-fold increase in affinity for insulin receptors, and [Thr49, Ser50, Ile51]IGF I has a 4-fold lower affinity for acid-stable human serum binding protein. These data strongly suggest that specific determinants in the A region of IGF I are important for maintaining binding to the type 2 IGF receptor, and that these determinants are different from those required for maintaining high affinity for the type 1 IGF receptor.  相似文献   

19.
The objective of this study was to determine hepatic expression levels of GHR, IGF1R, IGF1 and IGF2 genes in young growing gilts at different developmental ages (60–210 days) in five pig breeds: Polish Large White (PLW), Polish Landrace (PL), Pulawska (Pul), Duroc (Dur) and Pietrain (Pie). We studied the differences among pig breeds as well as within each breed for pigs in different developmental ages. Obtained results revealed major differences among breeds in hepatic gene expression of porcine GHR, IGF1R, IGF1 and IGF2 genes in different developmental ages. The differences among breeds of GHR expression were significantly higher in PLW, PL at the age of 60, 90, 120 days as compared to Pul, Dur and Pie. In turn, the highest level of IGF1R expression was observed in PL at age of 150, 180 and 210 days, whereas in case of IGF1 the highest level was recorded in Pie gilts at the age of 60 and 90 days. Moreover trait associated study revealed highly significant correlations between hepatic expressions of IGF1R and IGF2 genes and carcass composition traits (P < 0.01) The results of study suggest that porcine GHR, IGF1R, IGF1 and IGF2 genes may be potential candidate genes for postnatal growth and carcass composition traits. Therefore, the implementation of the hepatic expression of GH/IGF genes into the pig breeding and gene assisted selection program in different pig breeds should be considered. However, further population wide study is needed to clarify the hepatic expression association with economic traits, such as body growth, meat quality and carcass composition traits.  相似文献   

20.
Insulin-like growth factor 2 (IGF2) enhances proliferation and survival of human first-trimester cytotrophoblasts (CTB) by signaling through the insulin-like growth factor 1 receptor (IGF1R). However, the role of the IGF2 receptor (IGF2R) in regulating trophoblast kinetics is unclear: It could act as a clearance receptor for trafficking excess ligand to lysosomes for degradation and/or directly mediate IGF2 signaling. We used an IGF2R knockdown strategy in BeWo cells and placental villous explants to investigate trophoblast proliferation and survival in response to stimulation by IGF. Both IGF1 and IGF2 significantly (P < 0.001) increased mitosis and reduced apoptosis in serum-starved BeWo cells. Small interfering RNA (siRNA)-mediated knockdown of IGF2R further enhanced IGF2-stimulated mitosis (P < 0.01), and IGF2-mediated rescue of apoptosis (P < 0.001) in these cells. Leu(27)IGF2, an IGF2 analogue that binds to IGF2R but not IGF1R, also protected IGF2R-expressing BeWo cells from apoptosis but did not increase mitosis. IGF treatment of term placental villous explants with reduced syncytial expression of IGF2R increased CTB proliferation (P < 0.001) and decreased apoptosis (P < 0.01) compared to untreated controls. Moreover, IGF2-mediated rescue of CTB apoptosis was significantly greater than that in tissue with normal IGF2R expression. Leu(27)IGF2 promoted mitogenesis and survival only in explants with intact IGF2R expression. Given that altered CTB turnover is observed in pregnancies complicated by fetal growth restriction, the development of strategies to manipulate the IGF2R signaling axis in the syncytiotrophoblast may provide a therapeutic avenue for treating this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号