首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.  相似文献   

2.
3.
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.  相似文献   

4.
In Saccharomyces cerevisiae, the expression of invertase, which is the hydrolyzing enzyme of sucrose, is controlled by the presence of monosaccharides, such as glucose and fructose, and referred to as carbon catabolite repression. To date, efforts have been made to identify the mechanism by which cells sense extracellular monosaccharide concentrations and trigger the genes involved in the repression pathway. The aim of the present work was to quantitatively investigate the cellular regulation of invertase expression in the wild-type strain S. cerevisiae CEN.PK113-7D during batch growth containing mixed sugar substrates under different initial conditions. Because of the high frequency and accurate online analysis of multiple components, a tight control of invertase expression could be observed, and threshold concentrations of the monosaccharides for derepression could be determined to 0.5 gl(-1) for glucose and 2 gl(-1) for fructose. Also, the existence of a hitherto undescribed regulatory state, in which cells regulate invertase expression very precisely and operate over long periods at monosaccharide concentrations lower than the above thresholds, could be demonstrated. All experimental observations could be summarized in a formulation of the cellular regulation scheme of invertase expression. A simple kinetic model could show that the regulation scheme explains the observed behavior very well. Additionally, the model was able to explain consequences of the regulation on the global metabolism.  相似文献   

5.
This study addresses the question of whether observable changes in fluxes in the primary carbon metabolism of Saccharomyces cerevisiae occur between the different phases of the cell division cycle. To detect such changes by metabolic flux analysis, a 13C-labeling experiment was performed with a fed-batch culture inoculated with a partially synchronized cell population obtained through centrifugal elutriation. Such a culture exhibits dynamic changes in the fractions of cells in different cell cycle phases over time. The mass isotopomer distributions of free intracellular metabolites in central carbon metabolism were measured by liquid chromatography-mass spectrometry. For four time points during the culture, these distributions were used to obtain the best estimates for the metabolic fluxes. The obtained flux fits suggested that the optimally fitted split ratio for the pentose phosphate pathway changed by almost a factor of 2 up and down around a value of 0.27 during the experiment. Statistical analysis revealed that some of the fitted flux distributions for different time points were significantly different from each other, indicating that cell cycle-dependent variations in cytosolic metabolic fluxes indeed occurred.  相似文献   

6.
7.
Qualitative phenotypic changes are the integrated result of quantitative changes at multiple regulatory levels. To explain the temperature-induced increase of glycolytic flux in fermenting cultures of Saccharomyces cerevisiae, we quantified the contributions of changes in activity at many regulatory levels. We previously showed that a similar temperature increase in glucose-limited cultivations lead to a qualitative change from respiratory to fermentative metabolism, and this change was mainly regulated at the metabolic level. In contrast, in fermenting cells, a combination of different modes of regulation was observed. Regulation by changes in expression and the effect of temperature on enzyme activities contributed much to the increase in flux. Mass spectrometric quantification of glycolytic enzymes revealed that increased enzyme activity did not correlate with increased protein abundance, suggesting a large contribution of post-translational regulation to activity. Interestingly, the differences in the direct effect of temperature on enzyme kinetics can be explained by changes in the expression of the isoenzymes. Therefore, both the interaction of enzyme with its metabolic environment and the temperature dependence of activity are in turn regulated at the hierarchical level.  相似文献   

8.
This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.  相似文献   

9.
The understanding of dynamic metabolic regulations is important for physiological studies and strain characterization tasks. The present study combined transient experiments with online metabolic flux analysis (MFA) in order to quantify metabolic regulations, namely carbon catabolite repression of respiration and transient acetic-acid production, in Saccharomyces cerevisiae during aerobic growth on glucose. The aim was to investigate which additional information can be gained from using a small metabolic flux model to study transient growth provoked by shift-up and shift-down experiments, compared to online monitoring alone. The MFA model allowed us to propose new correlations between pathways of the central metabolism. A linear correlation between glycolytic flux and respiratory capacity holds for shift-down and shift-up experiments. This confirmed that respiratory functions were subjected to carbon catabolite repression and suggested that respiratory capacity is controlled by the glycolytic flux rather than the glucose influx. Furthermore, the model showed that control of repression of respiration by the glycolytic flux was a dynamic phenomenon. Co-factor balancing within the MFA model showed that transient acetic-acid production indicated a transient limitation in another part of the central metabolism but not in oxidative phosphorylation. However, at super-critical growth rates and when coupling of anabolism and catabolism is resumed, the limitation shifts to oxidative phosphorylation, with the consequence that ethanol is formed. The online application of small metabolic flux models to transient experiments enhanced the physiological insight into transient growth and opens up the use of transient experiments as an efficient tool to understand dynamic metabolic regulations.  相似文献   

10.
11.
12.
Saccharomyces cerevisiae shows a marked preference for glucose and fructose, revealed by the repression of genes whose products are involved in processing other carbon sources. This response seems to be driven by sugar phosphorylation in the first steps of glycolysis rather than by the external sugar concentration. To gain a further insight into the role of the internal sugar signalling mechanisms, were measured the levels of upper intracellular glycolytic metabolites and adenine nucleotides in three mutant strains, HXT1, HXT7 and TM6*, with progressively reduced uptake capacities in comparison with the wild type. Reducing the rate of sugar consumption caused an accumulation of hexose phosphates upstream of the phosphofructokinase (PFK) and a reduction of fructose-1,6-bisphosphate levels. Mathematical modelling showed that these effects may be explained by changes in the kinetics of PFK and phosphoglucose isomerase. Moreover, the model indicated a modified sensitivity of the pyruvate dehydrogenase and the trichloroacetic acid cycle enzymes towards the NAD/NADH in the TM6* strain. The activation of the SNF1 sugar signalling pathway, previously observed in the TM6* strain, does not correlate with a reduction of the ATP : AMP ratio as reported in mammals. The mechanisms that may control the glycolytic rate at reduced sugar transport rates are discussed.  相似文献   

13.

Background  

The yeast Saccharomyces cerevisiae is an important microorganism for both industrial processes and scientific research. Consequently, there have been extensive efforts to characterize its cellular processes. In order to fully understand the relationship between yeast's genome and its physiology, the stockpiles of diverse biological data sets that describe its cellular components and phenotypic behavior must be integrated at the genome-scale. Genome-scale metabolic networks have been reconstructed for several microorganisms, including S. cerevisiae, and the properties of these networks have been successfully analyzed using a variety of constraint-based methods. Phenotypic phase plane analysis is a constraint-based method which provides a global view of how optimal growth rates are affected by changes in two environmental variables such as a carbon and an oxygen uptake rate. Some applications of phenotypic phase plane analysis include the study of optimal growth rates and of network capaCity and function.  相似文献   

14.
Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v)) in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v) (5.27±0.13) was resistant to acid stress (5.28±0.14) but shifted significantly in response to alkali stress (5.83±0.13). Of 107 mutants that displayed aberrant pH(v) under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v) dysregulation in a neo1(ts) mutant restored viability whereas cholesterol accumulation in human NPC1(-/-) fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.  相似文献   

15.
Resveratrol is a unique, natural polyphenolic compound with diverse health benefits. In the present study, we attempted to improve resveratrol biosynthesis in yeast by different methods of metabolic engineering. We first mutated and then re-synthesized tyrosine ammonia lyase (TAL) by replacing the bacteria codons with yeast-preferred codons, which increased translation and improved p-coumaric acid and resveratrol biosynthesis drastically. We then demonstrated that low-affinity, high-capacity bacterial araE transporter could enhance resveratrol accumulation, without transporting resveratrol directly. Yeast cells carrying the araE gene produced up to 2.44-fold higher resveratrol than control cells. For commercial applications, resveratrol biosynthesis was detected in sucrose medium and fresh grape juice using our engineered yeast cells. In collaboration with the Chaumette Winery of Missouri, we were able to produce resveratrol-containing white wines, with levels comparable to the resveratrol levels found in most red wines.  相似文献   

16.
A novel method dissecting the regulation of a cellular function into direct metabolic regulation and hierarchical (e.g., gene-expression) regulation is applied to yeast starved for nitrogen or carbon. Upon nitrogen starvation glucose influx is down-regulated hierarchically. Upon carbon starvation it is down-regulated both metabolically and hierarchically. The method is expounded in terms of its implications for diverse types of regulation. It is also fine-tuned for cases where isoenzymes catalyze the flux through a single metabolic step.  相似文献   

17.
In Saccharomyces cerevisiae the HXK2 gene, which encodes the glycolytic enzyme hexokinase II, is involved in the regulatory mechanism known as 'glucose repression'. Its deletion leads to fully respiratory growth at high glucose concentrations where the wild type ferments profusely. Here we describe that deletion of the HXK2 gene resulted in a 75% reduction in fermentative capacity. Using regulation analysis we found that the fluxes through most glycolytic and fermentative enzymes were regulated cooperatively by changes in their capacities (Vmax) and by changes in the way they interacted with the rest of the metabolism. Glucose transport and phosphofructokinase were regulated purely at the metabolic level. The reduction of fermentative capacity in the mutant was accompanied by a remarkable resilience of the remaining capacity to nutrient starvation. After starvation, the fermentative capacity of the hxk2Delta mutant was similar to that of the wild type. Based on our results and previous reports, we suggest an inverse correlation between glucose repression and the resilience of fermentative capacity towards nutrient starvation. Only a limited number of glycolytic enzyme activities changed upon starvation of the hxk2Delta mutant and we discuss to what extent this could explain the stability of the fermentative capacity.  相似文献   

18.
The yeast Saccharomyces cerevisiae is a useful model system for examining the biosynthesis of sterols in eukaryotic cells. To investigate underlying regulation mechanisms, a flux analysis of the ergosterol pathway was performed. A stoichiometric model was derived based on well known biochemistry of the pathway. The model was integrated in the Software COMPFlux which uses a global optimization algorithm for the estimation of intracellular fluxes. Sterol concentration patterns were determined by gas chromatography in aerobic and anaerobic batch cultivations, when the sterol metabolism was suppressed due to the absence of oxygen. In addition, the sterol concentrations were observed in a cultivation which was shifted from anaerobic to aerobic growth conditions causing the sterol pools in the cell to be filled. From time-dependent flux patterns, possible limitations in the pathway could be localized and the esterification of sterols was identified as an integral part of regulation in ergosterol biosynthesis.  相似文献   

19.
The possible mechanism of synchronization of NADH oscillations in yeasts were studied. It was shown that the synchronization time depends on cell concentration in suspension. Synchronization of oscillations after acetaldehyde addition was found in Saccharomyces carlsbergensis whereas in S. cerevisiae oscillations were synchronized after adding potassium cyanide. It is possible, that synchronization of oscillations in S. cerevisiae requires low concentration of acetaldehyde and the high acetaldehyde concentration synchronizes oscillations in S. carlsbergensis. In addition, a possible mechanism of synchronization by acetaldehyde in proposed.  相似文献   

20.
A dominant, single nuclear gene mutation, CSE1, caused inositol auxotrophy in yeast cells. The inositol requirement was marked when choline was present in the medium. Inositol-1-phosphate synthase, the regulatory enzyme of inositol synthesis, is repressed by inositol, or more profoundly by a combination of inositol and choline in the wild type. In CSE1, the level of inositol-1-phosphate synthase was low and was greatly repressed on the addition of choline alone. In accordance with this, INO1 mRNA encoding the enzyme was low even under the depressed conditions and was profoundly decreased by choline in CSE1. But in the wild type, the addition of choline alone had little effect. An INO1-lacZ fusion was constructed and the control of the INO1 promoter in CSE1 was studied. lacZ expression was repressed not only by inositol, but also by choline in CSE1, whereas it was repressed by inositol, but only slightly by choline in the wild type. CSE1 was unlinked to the INO1 structural gene. Thus CSE1 was thought to be a regulatory mutation. Furthermore, when the CDP-choline pathway was mutationally blocked, choline did not affect INO1 expression, indicating that the metabolism of choline via the CDP-choline pathway is required for INO1 repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号