首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Invasive adenylate cyclase toxin of Bordetella pertussis   总被引:8,自引:0,他引:8  
Bordetella pertussis produces an adenylate cyclase which is a toxin. The enzyme penetrates eukaryotic cells and, upon activation by host calmodulin, generates high levels of intracellular cAMP; as a result bactericidal functions of immune effector cells are considerably impaired. The toxin is composed of a single polypeptide that possesses both the catalytic and the toxic functions. It penetrates the host cell directly from the plasma membrane and is concomitantly inactivated by a proteolytic degradation.  相似文献   

2.
Bordetella pertussis causes a profound inflammatory response in lungs of infected individuals. The adenylate cyclase toxin (ACT) of B. pertussis is a potent enzyme that converts cytosolic ATP into cAMP, and is required for virulence in vivo. During infection, secreted ACT binds to macrophages utilizing the beta2 integrin, Mac-1 (CR3, CD11b/CD18), and subsequent intoxication by ACT inhibits essential antibacterial activities of macrophages. Additionally, Mac-1 has been reported to be a co-receptor for TLR4 required for the full induction of some LPS-responsive genes, including pro-inflammatory cyclooxygenase 2 (COX-2). We have examined the effect of ACT on COX-2 expression in HEK293T cells expressing Mac-1 and in murine macrophages. We report that ACT induces COX-2 in a manner that absolutely requires the catalytic activity of this enzyme and Mac-1 expression dramatically enhanced the sensitivity of cells to ACT-dependent COX-2 induction. The mechanism of COX-2 induction by ACT utilizes the cAMP-PKA-CREB-dependent pathway. Finally, ACT and TLR2 or TLR4 act synergistically to increase COX-2 expression. These data suggest that ACT contributes significantly to the inflammatory response induced by B. pertussis infection by augmenting COX-2 expression and provides evidence against the concept that ACT functions exclusively via its inhibitory effects on phagocytic leucocytes.  相似文献   

3.
Adenylate cyclase (AC) toxin from Bordetella pertussis inserts into eukaryotic cells, producing intracellular cAMP, as well as hemolysis and cytotoxicity. Concentration dependence of hemolysis suggests oligomers as the functional unit and inactive deletion mutants permit partial restoration of intoxication and/or hemolysis, when added in pairs [M. Iwaki, A. Ullmann, P. Sebo, Mol. Microbiol. 17 (1995) 1015-1024], suggesting dimerization/oligomerization. Using affinity co-precipitation and fluorescence resonance energy transfer (FRET), we demonstrate specific self-association of AC toxin molecules in solution. Flag-tagged AC toxin mixed with biotinylated-AC toxin, followed by streptavidin beads, yields both forms of the toxin. FRET measurements of toxin, labeled with different fluorophores, demonstrate association in solution, requiring post-translational acylation, but not calcium. AC toxin mixed with DeltaR, an inactive mutant, results in enhancement of hemolysis over that with wild type alone, suggesting that oligomers are functional. Dimers and perhaps higher molecular mass forms of AC toxin occur in solution in a manner that is relevant to toxin action.  相似文献   

4.
Bordetella pertussis and the other Bordetella species produce a novel adenylate cyclase toxin which enters target cells to catalyze the production of supraphysiologic levels of intracellular cyclic adenosine monophosphate (cAMP). In these studies, dialyzed extracts from B. pertussis containing the adenylate cyclase toxin, a partially purified preparation of adenylate cyclase toxin, and extracts from transposon Tn5 mutants of B. pertussis lacking the adenylate cyclase toxin, were used to assess the effects of adenylate cyclase toxin on human peripheral blood monocyte activities. Luminol-enhanced chemiluminescence of monocytes stimulated with opsonized zymosan was inhibited greater than 96% by exposure to adenylate cyclase toxin-containing extract, but not by extracts from adenylate cyclase toxin-deficient mutants. The chemiluminescence responses to particulate (opsonized zymosan, Leishmania donovani, and Staphylococcus aureus) and soluble (phorbol myristate acetate) stimuli were inhibited equivalently. The superoxide anion generation elicited by opsonized zymosan was inhibited 92% whereas that produced by phorbol myristate acetate was inhibited only 32% by B. pertussis extract. Inhibition of oxidative activity was associated with a greater than 500-fold increase in monocyte cAMP levels, but treated monocytes remained viable as assessed by their ability to exclude trypan blue and continued to ingest particulate stimuli. The major role of the adenylate cyclase toxin in the inhibition of monocyte oxidative responses was demonstrated by: 1) little or no inhibition by extracts from B. pertussis mutants lacking adenylate cyclase toxin; 2) high level inhibition with extract from B. parapertussis, a related species lacking pertussis toxin; and 3) a reciprocal relationship between monocyte cAMP levels and inhibition of opsonized zymosan-induced chemiluminescence using both crude extract and partially purified adenylate cyclase toxin. Pertussis toxin, which has been shown to inhibit phagocyte responses to some stimuli by a cAMP-independent mechanism, had only a small (less than 20%) inhibitory effect when added at concentrations up to 100-fold in excess of those present in B. pertussis extract. These data provide strong support for the hypothesis that B. pertussis adenylate cyclase toxin can increase cAMP levels in monocytes without compromising target cell viability or impairing ingestion of particles and that the resultant accumulated cAMP is responsible for the inhibition of oxidative responses to a variety of stimuli.  相似文献   

5.
Assay of calmodulin with Bordetella pertussis adenylate cyclase   总被引:3,自引:0,他引:3  
Low levels of the calcium-dependent regulator protein, calmodulin, may be measured utilizing membranes prepared from Bordetella pertussis which contain and adenylate cyclase which is activated by this protein. The activation is dose dependent and tissue levels of calmodulin can be determined over a range from 2 pg to 100 ng with good reliability. We demonstrate how this bioassay may be employed to measure the levels of calmodulin in a variety of protein and cellular preparations.  相似文献   

6.
7.
Abstract To investigate the high prevalence among infants of antibodies to Bordetella pertussis adenylate cyclase toxin (ACT), cord-blood sera were examined for antibodies to ACT, filamentous hemagglutinin (FHA) and pertussis toxin (PT) using immunoblot analysis. Antibodies reactive with ACT were the most prevalent in neonatal sera. Similar reactivity of IgG with ACT was found in each sample of a given neonatal-maternal pair, yet IgM reactive with ACT was virtually absent in neonatal sera, suggesting that antibodies to ACT are maternally derived. Antibodies to ACT might come from infection or childhood vaccination of the mothers since pertussis vaccines from all US manufacturers elicited antibodies to ACT in mice. Alternatively, these antibodies may have been elicited by a cross-reactive antigen such as Escherichia coli α-hemolysin, since all of the neonatal and maternal sera contained antibodies reactive with α-hemolysin.  相似文献   

8.
Bordetella pertussis adenylate cyclase (AC) toxin belongs to the RTX family of toxins but is the only member with a known catalytic domain. The principal pathophysiologic function of AC toxin appears to be rapid production of intracellular cyclic AMP (cAMP) by insertion of its catalytic domain into target cells (referred to as intoxication). Relative to other RTX toxins, AC toxin is weakly hemolytic via a process thought to involve oligomerization of toxin molecules. Monoclonal antibody (MAb) 3D1, which binds to an epitope (amino acids 373 to 399) at the distal end of the catalytic domain of AC toxin, does not affect the enzymatic activity of the toxin (conversion of ATP into cAMP in a cell-free system) but does prevent delivery of the catalytic domain to the cytosol of target erythrocytes. Under these conditions, however, the ability of AC toxin to cause hemolysis is increased three- to fourfold. To determine the mechanism by which the hemolytic potency of AC toxin is altered, we used a series of deletion mutants. A mutant toxin, DeltaAC, missing amino acids 1 to 373 of the catalytic domain, has hemolytic activity comparable to that of wild-type toxin. However, binding of MAb 3D1 to DeltaAC enhances its hemolytic activity three- to fourfold similar to the enhancement of hemolysis observed with 3D1 addition to wild-type toxin. Two additional mutants, DeltaN489 (missing amino acids 6 to 489) and DeltaN518 (missing amino acids 6 to 518), exhibit more rapid hemolysis with quicker onset than wild-type toxin does, while DeltaN549 (missing amino acids 6 to 549) has reduced hemolytic activity compared to wild-type AC toxin. These data suggest that prevention of delivery of the catalytic domain or deletion of the catalytic domain, along with additional amino acids distal to it, elicits a conformation of the toxin molecule that is more favorable for hemolysis.  相似文献   

9.
Guo Q  Shen Y  Lee YS  Gibbs CS  Mrksich M  Tang WJ 《The EMBO journal》2005,24(18):3190-3201
CyaA is crucial for colonization by Bordetella pertussis, the etiologic agent of whooping cough. Here we report crystal structures of the adenylyl cyclase domain (ACD) of CyaA with the C-terminal domain of calmodulin. Four discrete regions of CyaA bind calcium-loaded calmodulin with a large buried contact surface. Of those, a tryptophan residue (W242) at an alpha-helix of CyaA makes extensive contacts with the calcium-induced, hydrophobic pocket of calmodulin. Mutagenic analyses show that all four regions of CyaA contribute to calmodulin binding and the calmodulin-induced conformational change of CyaA is crucial for catalytic activation. A crystal structure of CyaA-calmodulin with adefovir diphosphate, the metabolite of an approved antiviral drug, reveals the location of catalytic site of CyaA and how adefovir diphosphate tightly binds CyaA. The ACD of CyaA shares a similar structure and mechanism of activation with anthrax edema factor (EF). However, the interactions of CyaA with calmodulin completely diverge from those of EF. This provides molecular details of how two structurally homologous bacterial toxins evolved divergently to bind calmodulin, an evolutionarily conserved calcium sensor.  相似文献   

10.
Bordetella pertussis, the etiologic agent of whooping cough, produces a calmodulin-sensitive adenylate cyclase which elevates intracellular cAMP in a variety of eucaryotic cells. Exogenous calmodulin added to the partially purified adenylate cyclase has been shown to inhibit invasion of animal cells by this enzyme (Shattuck, R. L., and Storm, D. R. (1985) Biochemistry 24, 6323-6328). In this study, several properties of the calmodulin-sensitive adenylate cyclase are shown to be influenced by Ca2+ in the absence of calmodulin. The presence or absence of Ca2+ during QAE-Sephadex ion exchange chromatography produced two distinct chromatographic patterns of adenylate cyclase activity. Two different forms of the enzyme (Pk1 and Pk2EGTA) were isolated by this procedure. Pk1 adenylate cyclase readily elevated intracellular cAMP levels in mouse neuroblastoma cells (N1E-115) while Pk2EGTA adenylate cyclase had no effect on cAMP levels in these cells. Gel exclusion chromatography of Pk1 adenylate cyclase gave apparent Stokes radii (RS) of 43.5 A (+/- 1.3) in the presence of 2 mM CaCl2 and 33.8 A (+/- 0.94) in the presence of 2 mM EGTA [( ethylenebis (oxyethylenenitrilo)]tetraacetic acid). These Stokes radii are consistent with molecular weights of 104,000 (+/- 6,400) and 61,000 (+/- 3,600), respectively. Pk2EGTA adenylate cyclase had an apparent RS of 33.0 (+/- 1.2) (Mr = 60,600 (+/- 2,800] in the presence of Ca2+ or excess EGTA. At 60 degrees C, Pk1 adenylate cyclase exhibited a Ca2+-dependent heat stability with a half-life for loss of enzyme activity of 10.3 min in 5 mM CaCl2 and a half-life of 2.8 min in the presence of 0.1 microM CaCl2. The stability of Pk2EGTA adenylate cyclase was not affected by changes in free Ca2+. The adenylate cyclase preparations described above were submitted to sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and enzyme activity was recovered from gel slices by extraction with detergent containing buffers. The catalytic subunit isolated from SDS-polyacrylamide gels was activated 7-fold in the presence of Ca2+ with maximum activity observed at 1 microM free Ca2+. With both preparations, the apparent molecular weight of the catalytic subunit on SDS gels was 51,000 in the presence of 2 mM CaCl2 and 45,000 in the presence of 2 mM EGTA. The catalytic subunit of the enzyme was purified to apparent homogeneity by preparative SDS-polyacrylamide gel electrophoresis and resubmitted to SDS gel electrophoresis in the presence or absence of free Ca2+. The purified catalytic subunit also exhibited a Ca2+-dependent shift in its mobility on SDS gels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Adenylate cyclase toxin (ACT) is secreted by Bordetella pertussis, the bacterium causing whooping cough. ACT is a member of the RTX (repeats in toxin) family of toxins, and like other members in the family, it may bind cell membranes and cause disruption of the permeability barrier, leading to efflux of cell contents. The present paper summarizes studies performed on cell and model membranes with the aim of understanding the mechanism of toxin insertion and membrane restructuring leading to release of contents. ACT does not necessarily require a protein receptor to bind the membrane bilayer, and this may explain its broad range of host cell types. In fact, red blood cells and liposomes (large unilamellar vesicles) display similar sensitivities to ACT. A varying liposomal bilayer composition leads to significant changes in ACT-induced membrane lysis, measured as efflux of fluorescent vesicle contents. Phosphatidylethanolamine (PE), a lipid that favors formation of nonlamellar (inverted hexagonal) phases, stimulated ACT-promoted efflux. Conversely, lysophosphatidylcholine, a micelle-forming lipid that opposes the formation of inverted nonlamellar phases, inhibited ACT-induced efflux in a dose-dependent manner and neutralized the stimulatory effect of PE. These results strongly suggest that ACT-induced efflux is mediated by transient inverted nonlamellar lipid structures. Cholesterol, a lipid that favors inverted nonlamellar phase formation and also increases the static order of phospholipid hydrocarbon chains, among other effects, also enhanced ACT-induced liposomal efflux. Moreover, the use of a recently developed fluorescence assay technique allowed the detection of trans-bilayer (flip-flop) lipid motion simultaneous with efflux. Lipid flip-flop further confirms the formation of transient nonlamellar lipid structures as a result of ACT insertion in bilayers.  相似文献   

12.
Bordetella pertussis adenylate cyclase toxin (ACT) intoxicates cells by producing intracellular cAMP. B. pertussis outer membrane vesicles (OMV) contain ACT on their surface (OMV-ACT), but the properties of OMV-ACT were previously unknown. We found that B. pertussis in the lung from a fatal pertussis case contains OMV, suggesting an involvement in pathogenesis. OMV-ACT and ACT intoxicate cells with and without the toxin's receptor CD11b/CD18. Intoxication by ACT is blocked by antitoxin and anti-CD11b antibodies, but not by cytochalasin-D; in contrast, OMV-ACT is unaffected by either antibody and blocked by cytochalasin-D. Thus OMV-ACT can deliver ACT by processes distinct from those of ACT alone.  相似文献   

13.
Adenylate cyclase toxin (CyaA) of Bordetella pertussis belongs to the repeat in toxin family of pore-forming toxins, which require posttranslational acylation to lyse eukaryotic cells. CyaA modulates dendritic cell (DC) and macrophage function upon stimulation with LPS. In this study, we examined the roles of acylation and enzymatic activity in the immunomodulatory and lytic effects of CyaA. The adenylate cyclase activity of CyaA was necessary for its modulatory effects on murine innate immune cells. In contrast, acylation was not essential for the immunomodulatory function of CyaA, but was required for maximal caspase-3 activation and cytotoxic activity. The wild-type acylated toxin (A-CyaA) and nonacylated CyaA (NA-CyaA), but not CyaA with an inactive adenylate cyclase domain (iAC-CyaA), enhanced TLR-ligand-induced IL-10 and inhibited IL-12, TNF-alpha, and CCL3 production by macrophages and DC. In addition, both A-CyaA and NA-CyaA, but not iAC-CyaA, enhanced surface expression of CD80 and decreased CpG-stimulated CD40 and ICAM-1 expression on immature DC. Furthermore, both A-CyaA and NA-CyaA promoted the induction of murine IgG1 Abs, Th2, and regulatory T cells against coadministered Ags in vivo, whereas iAC-CyaA had more limited adjuvant activity. In contrast, A-CyaA and iAC-CyaA induced caspase-3 activation and cell death in macrophages, but these effects were considerably reduced or absent with NA-CyaA. Our findings demonstrate that the enzymatic activity plays a critical role in the immunomodulatory effects of CyaA, whereas acylation facilitates the induction of apoptosis and cell lysis, and as such, NA-CyaA has considerable potential as a nontoxic therapeutic molecule with potent anti-inflammatory properties.  相似文献   

14.
The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells by a unique mechanism that consists in a calcium-dependent, direct translocation of the CyaA catalytic domain across the plasma membrane of the target cells. CyaA possesses a series of a glycine- and aspartate-rich nonapeptide repeats (residues 1006-1613) of the prototype GGXG(N/D)DX(L/I/F)X (where X represents any amino acid) that are characteristic of the RTX (repeat in toxin) family of bacterial cytolysins. These repeats are arranged in a tandem fashion and may fold into a characteristic parallel beta-helix or beta-roll motif that constitutes a novel type of calcium binding structure, as revealed by the three-dimensional structure of the Pseudomonas aeruginosa alkaline protease. Here we have characterized the structure-function relationships of various fragments from the CyaA RTX subdomain. Our results indicate that the RTX functional unit includes both the tandem repeated nonapeptide motifs and the adjacent polypeptide segments, which are essential for the folding and calcium responsiveness of the RTX module. Upon calcium binding to the RTX repeats, a conformational rearrangement of the adjacent non-RTX sequences may act as a critical molecular switch to trigger the CyaA entry into target cells.  相似文献   

15.
The structural organization of Bordetella pertussis adenylate cyclase was examined by limited proteolysis with trypsin and/or cross-linking with azido-calmodulin a photoactivable derivative of its activator, calmodulin (CaM). Adenylate cyclase (which consists of three structurally related peptides of 50, 45, and 43 kDa as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) formed a 1:1 complex with CaM or azido-CaM. CaM-bound adenylate cyclase was cleaved by trypsin into two separate trypsin-resistant fragments of 25 and 18 kDa which both interacted with CaM as judged by their ability to be cross-linked with azido-CaM. These two fragments remained associated with CaM in a catalytically active conformation resembling that of the undigested complex. When proteolysis was carried out in the absence of CaM, the adenylate cyclase was completely inactivated in less than 3 min. Sodium dodecyl sulfate-polyacrylamide gel revealed a single 24-kDa trypsin-resistant fragment. Since this fragment cannot be cross-linked with azido-CaM we suggest that the CaM-binding site on the 25-kDa moiety of the adenylate cyclase is located on a short segment of 1 kDa.  相似文献   

16.
An engineered calmodulin differs from vertebrate calmodulin in its ability to activate Bordetella pertussis adenylate cyclase, and this difference has been utilized as the basis for a new purification protocol for the adenylate cyclase. VU-8 calmodulin, in which 3 glutamic acid residues (residues 82-84) have been substituted with 3 lysine residues, has a 1000-fold lower apparent affinity for the adenylate cyclase, compared to vertebrate calmodulin, and decreased maximal activity. Because of the relatively calcium-independent nature of the interaction between calmodulin and the cyclase, the use of calmodulin-Sepharose conjugates in the purification of the cyclase requires the use of chaotropic agents for elution. However, when immobilized VU-8 calmodulin was tested as a calcium-dependent, affinity-based, adsorption chromatography step in the purification of the cyclase from culture media or bacterial extracts, the enzyme bound to the column in a calcium-dependent manner, and a nearly homogeneous enzyme was obtained in high yield. These results demonstrate the feasibility of using engineered calmodulins that have selective differences in activity for the rational design of rapid purification protocols for calmodulin-binding proteins as well as indicate the importance of the conserved negative charge cluster at residues 82-84 of calmodulin for activation of this cyclase.  相似文献   

17.
Bordetella pertussis secretes a calmodulin-activated adenylate cyclase toxin (CyaA) that is able to deliver its amino-terminal catalytic domain into the cytosol of eukaryotic cells. The novelty of the structural organization and conformational flexibility of the CyaA catalytic domain has opened up the way for exploiting this protein as a tool for several biological applications, including epitope delivery, protein targeting and characterization of protein-protein interactions.  相似文献   

18.
Knapp O  Maier E  Polleichtner G  Masín J  Sebo P  Benz R 《Biochemistry》2003,42(26):8077-8084
Calmodulin-dependent adenylate cyclase toxin (ACT or CyaA) of Bordetella pertussis requires calcium ions for target cell binding, formation of hemolytic channels, and delivery of its enzyme component into cells. We examined the effect of calcium and calmodulin on toxin interaction with planar lipid bilayers. While calmodulin binding did not affect the properties of CyaA channels, addition of calcium ions and toxin to the same side of the membrane caused a steep increase of the channel-forming capacity of CyaA. The calcium effect was highly specific, since among other divalent cations only strontium caused some CyaA activity enhancement. The minimal stimulatory concentration of calcium ions ranged from 0.6 to 0.8 mM, depending on the ionic strength of the aqueous phase. Half-maximal channel activity of CyaA was observed at 2-4 mM, and saturation was reached at 10 mM calcium concentration, respectively. The unit size of single CyaA channels, assessed as single-channel conductance, was not affected by calcium ions, while the frequency of CyaA channel formation strongly depended on calcium concentration. The calcium effect was abrogated upon deletion of the RTX repeats of the toxin, suggesting that binding of calcium ions to the repeats modulates the propensity of CyaA to form membrane channels.  相似文献   

19.
We report the identification of novel small molecule agonists of integrin CD11b/CD18, which increased, in a dose-dependent manner, the adhesion of the integrin CD11b/CD18 expressing cells to two physiologically relevant ligands: Fibrinogen and iC3b. Compound 6 showed an ex vivo EC50 of 10.5 μM and in vitro selectivity for binding to the recombinant αA-domain of CD11b/CD18. In silico docking experiments suggest that the compounds recognized a hydrophobic cleft in the ligand-binding αA-domain, implying an allosteric mechanism of modulation of integrin affinity by this novel compound.  相似文献   

20.
Bordetella pertussis produces a cell-invasive adenylate cyclase toxin which is synthesised from the cyaA gene as an inactive protoxin that is post-translationally activated by the product of the cyaC gene. Purified active and inactive CyaA proteins were prepared from B. pertussis or from recombinant Escherichia coli expressing both cyaA and cyaC genes or the cyaA gene alone. respectively. In addition, a hybrid toxin (Hyb2) in which an internal region of CyaA had been replaced with the analogous region from the leukotoxin (LktA) of Pasteurella haemolytica, and which had low cell-invasive activity, was also prepared from E. coli expressing the cyaC gene. The CyaA preparations showed no evidence of toxicity in a mouse weight-gain test. Active toxin preparations were protective in mice against intranasal challenge with wild-type B. pertussis, as evidenced by lung:body weight ratios and bacterial numbers in the lungs, which were comparable to those in mice given whole-cell DPT vaccine. Hyb2 was not as protective as active CyaA and inactive CyaA preparations were not protective. Active CyaA, when co-administered with ovalbumin (OA), had a marked adjuvant effect on the anti-OA IgG antibody response which was not as apparent with inactive CyaA preparations. Similarly, active CyaA stimulated a greater anti-CyaA response than the inactive form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号