首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】沿海滩涂耐盐植物重金属抗性内生细菌的筛选及其促生长潜在能力的研究有助于我们获得一些能够耐受并促进耐盐植物在被Cd2+、Pb2+、Hg2+、Cu2+,Zn2+等重金属离子污染的贫瘠的沿海滩涂上正常生长的菌株,达到既能够利用广袤的滩涂生物资源产生经济价值又能够净化生态环境的目的。【方法】以江苏南通沿海滩涂地区的4种耐盐植物为材料,采用稀释平板涂布法从中分离得到45株内生细菌,从中挑取23株代表性的菌株,对其进行抗重金属Cu2+、Pb2+、Cd2+、Zn2+,Hg2+的活性筛选;固氮、解磷、吲哚乙酸(IAA)的产生、1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性等促生指标以及NaCl耐受能力的筛选。【结果】发现分离所得的大多数细菌能够耐受高浓度的Cu2+以及Pb2+,但是对Cd2+、Zn2+,Hg2+的耐受能力则较弱;26.1%的细菌具有固氮能力,21.7%的细菌具有解磷能力,60.9%的细菌能够产生IAA,39.1%的细菌含有ACC脱氨酶。对他们进行16S rRNA基因鉴定后发现,他们分属于芽胞杆菌属(Bacillus)、喜盐芽胞杆菌属(Halobacillus)、海洋芽胞杆菌属(Oceanobacillus)、微小杆菌属(Exiguobacterium)、沙雷氏菌属(Serratia)、短波单胞菌属(Brevundimonas)、弧菌属(Vibrio)、葡萄球菌属(Staphylococcus)共8个属,显示了丰富的多样性。其中菌株KLBMP 2432以及菌株KLBMP 2447为潜在的新种。【结论】沿海滩涂地区的耐盐植物内生细菌具有丰富多样的生物多样性以及促生长能力,且存在潜在的新种资源,并对重金属Cu2+,Pb2+具有较强的抗性。  相似文献   

2.
3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the net condensation of phosphoenolpyruvate and d-arabinose 5-phosphate to form KDO8P and inorganic phosphate (Pi). Two classes of KDO8P synthases have been identified. The Class I KDO8P synthases (e.g. Escherchia coli KDO8P synthase) catalyze the condensation reaction in a metal-independent fashion, whereas the Class II enzymes (e.g. Aquifex aeolicus) require metal ions for catalysis. Helicobacter pylori (H. pylori) KDO8P synthase, a Zn2+-dependent metalloenzyme, has recently been found to be a Class II enzyme and has a high degree of clinical significance since it is an attractive molecular target for the design of novel antibiotic therapy. Although the presence of a divalent metal ion in Class II KDO8P synthases is essential for catalysis, there is a paucity of mechanistic information on the role of the metal ions and functional differences as compared with Class I enzymes. Using H. pylori KDO8P synthase as a prototypical Class II enzyme, a steady-state and transient kinetic approach was undertaken to understand the role of the metal ion in catalysis and define the kinetic reaction pathway. Metal reconstitution experiments examining the reaction kinetics using Zn2+, Cd2+, Cu2+, Co2+, Mn2+, and Ni2+ yielded surprising results in that the Cd2+ enzyme has the greatest activity. Unlike Class-I KDO8P synthases, the Class II metallo-KDO8P synthases containing Zn2+, Cd2+, Cu2+, and Co2+ show cooperativity. This study presents the first detailed kinetic characterization of a metal-dependent Class II KDO8P synthase and offers mechanistic insight for how the divalent metal ions modulate catalysis through effects on chemistry as well as quaternary protein structure.  相似文献   

3.
A W Pickett  I S Carter  A C Dean 《Microbios》1976,15(60):105-111
The activities of phosphatases and some enzymes of glucose metabolism were determined in K. aerogenes NCIB 418 and in two strains derived from it, resistant to 50 mug Cd2+ ml-1 and 16 mug Zn2+ ml-1 respectively, during growth at D = 0.38 h-1 in medium containing beta-glycerophosphate as sole phosphorus source and supplemented with Cd2+ and Zn2+, as appropriate, for the resistant strains. The pH-activity profiles of the phosphatases differed from strain to strain but all showed maximum activity at an acid pH and this activity was very much lower in the Zn2+-resistant strain than in the control and even lower in the Cd2+-resistant strain. Resistance to either metal was associated with decreased glucose-6-phosphate dehydrogenase activity and increased phosphoglucose isomerase activity, suggesting an increased flow of carbon through the Embden-Meyerhof pathway relative to the pentose phosphate pathway, but the efficiency of the conversion of glucose into biomass was largely unaffected. Glucose phosphoenolpyruvate phosphotransferase activity was also lower in the resistant strains.  相似文献   

4.
5.
It has been reported that the Fl generation of tobaccos (Nicotiana tabacurn L. 90082) transformed with 35S mMT- 1: NOS chimaric gene was significantly different from the control plants with respect to Cd2 + intolerance. Growth of transgenic tobaccos was uneffected by Cd2+ even with concentration as high as 100 μmol/L in the medium, whereas that of control plants was severely hampered in the medium containing only 20 μmol/L Cd2+, indicating a stronger tolerance to Cd2+ in the transgenic tobaccos than the control plants. The total Cd2+, binding Cd2+, and free Cd2+ contents in the transgenic tobaccos were obviously more than those in the control plants, and the rate of root growth and index of mitosis were increased as well. In contrast, much less the frequency of chromosomal aberrations was found in the transgenic tobaccos. These suggested that MT as a membrane protein could function as a channel protein or an ion pump which direetively transport Cd2+ into a structure (e. g. vacuole), except MT formed binding Cd2+. The mMT expresion revealed from Southern blot, Western blot, and Cd2+/haemoglobin saturation analysis all indicated that the transformation was succeeded. The MT protein was found in roots and leaves of the transgenic plants grown in the medium containing 100 μmol/L Cd2+, whereas it was not detected in control and transgenic plants grown in medium without Cd2+.  相似文献   

6.
7.
Azolla pinnata is an extremely NaCl-sensitive plant and cannot tolerate an external NaCl concentration beyond 30 mM. Preincubation of plants in 20 mM NaCl for 18 days, followed by stepwise transfer (10 mM NaCl per day) made them able to grow at an otherwise lethal NaCl concentration of 60 mM at rates comparable to the growth of unadapted plants in 20 mM NaCl. Plants, not preincubated in 20 mM NaCl or preincubated for a duration shorter than 18 days were unable to survive and did not grow in 60 mM external NaCl. Na+, K+ and Ca2+ concentrations in the control, NaCl-stressed and adapted plants differed significantly indicating that adaptation involved the development of a capability in the plants to regulate ion concentration.  相似文献   

8.
Acid phosphatase (APase) activity of the yeast Yarrowia lipolytica increased with increasing Cu2+ concentrations in the medium. Furthermore, the enzyme in soluble form was stimulated in vitro by Cu2+, Co2+, Ni2+, Mn2+ and Mg2+ and inhibited by Ag+ and Cd2+. The most effective ion was Cu2+, especially for the enzyme from cultures in medium containing Cu2+, whereas APase activity in wall-bound fragments was only slightly activated by Cu2+. The content of cellular phosphate involving polyphosphate was decreased by adding Cu2+, regardless of whether or not the medium was rich in inorganic phosphate. Overproduction of the enzyme stimulated by Cu2+ might depend on derepression of the gene encoding the APase isozyme.  相似文献   

9.
The interaction of Mg2+, Ca2+, Zn2+, and Cd2+ with calf thymus DNA has been investigated by Raman spectroscopy. These spectra reveal that all of these ions, and particularly Zn2+, bind to phosphate groups of DNA, causing a slight structural change in the polynucleotide at very small metal: DNA (P) concentration ratio (ca. 1:30). This results in increased base-stacking interactions, with negligible change of the B conformation of DNA. Contrary to Zn2+ and Cd2+, which interact extensively with the nucleic bases (particularly at the N7 position of guanine), the alkaline-earth metal ions are bound almost exclusively to the phosphate groups. The affinity of both the Zn2+ and Cd2+ ions for G.C base pairs is comparable, but the Cd2+ ions interact more extensively with A.T pairs than Zn2+ ions. Interstrand cross-linking through the N3 atom of cytosine is suggested in the presence of Zn2+, but not Cd2+.  相似文献   

10.
Phytases release inorganic phosphates from phytate in soil. A gene encoding phytase (AfPhyA) was isolated from Aspergillus ficuum and its ability to degrade phytase and release phosphate was demonstrated in Saccharomyces cerevisiae. A promoter from the Arabidopsis Pky10 gene and the carrot extensin signal peptide were used to drive the root-specific and secretory expression of the AfPhyA gene in soybean plants. The phytase activity and inorganic phosphate levels in transgenic soybean root secretions were 4.7 U/mg protein and 439 μM, respectively, compared to 0.8 U/mg protein and 120 μM, respectively, in control soybeans. Our results demonstrated the potential usefulness of the root-specific promoter for the exudation of recombinant phytases and offered a new perspective on the mobilization of phytate in soil to inorganic phosphates for plant uptake. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guilan Li and Shaohui Yang authors contribute equally to the paper.  相似文献   

11.
Lead accumulation in the aquatic fern Azolla filiculoides.   总被引:2,自引:0,他引:2  
In this study, we characterized lead (Pb2+) accumulation and storage by the aquatic fern Azolla filiculoides. Lead precipitates were detected in the vacuoles of mesophyll cells of Azolla plants cultured for 6 d in rich growth medium containing 20 mg l(-1) Pb2+. Energy dispersive spectroscopy (EDS) analysis of the relative element content of leaves collected from these plants revealed a 100% increase in the levels of P, S, Na and Ca and a 40% decrease in Mg and Cl compared to the untreated plants. Both Azolla whole plants and isolated apoplasts were incubated for 6 d in 20 mg l(-1) Pb2+. Lead content in the whole plant composed 0.37%, 2.3% and 1.8% of the dry weight after 2, 4 and 6 d of growth, respectively, while the isolated Azolla apoplast contained 0.125%, 1.22% and 1.4% Pb2+, respectively. Lead content in Azolla whole plant increase by 200%, 100% and 22% after 2, 4 and 6 d of growth, respectively, when compared to Azolla apoplast. Dark, electron dense deposits of lead were observed in light and transmission electron microscope in leaf cells treated with lead. All the observed lead deposits were localized in vacuoles while larger lead deposits were found in mature leaves than in young leaves. No lead deposits were found in cells of the cyanobiont Anabaena when the plants were exposed to similar conditions. Activity and content of V-H+-ATPase were studied in Azolla plants grown in the presence of 20, 40 and 80 mg l(-1) of lead for a period of 4 d. Activity of V-H+-ATPase was increased by 190%, 210% and 220%, respectively, but the content of V-H+-ATPase was reduced by all lead concentrations.  相似文献   

12.
Heterologous expression of a phytase gene (phyC) from Bacillus amyloliquefaciens DSM 7 enabled the growth of Corynebacterium glutamicum with phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate) as a new, sole source of phosphorus. Phytate was not used as a carbon source. During growth of the phyC-expressing amino acid (l-lysine)-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) with phytate as the source of phosphorus, merely a small, transient accumulation of inorganic phosphate was observed in the fermentation broth. At the later stages of fermentation, free inorganic phosphate from phytate degradation was no longer detectable. Growth and l-lysine production by the phytase-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) in phytate medium did not differ significantly from control experiments with strain C. glutamicum ATCC 21253 (pWLQ2) conducted with an excess of inorganic phosphate, demonstrating that there was no phosphate limitation when phytate was used as the phosphorus source. Under the expression conditions employed, only part of PhyC was secreted to the culture broth by C. glutamicum, but this did not significantly affect growth or lysine production.  相似文献   

13.
14.
The levels of glucose, sugar phosphates, and adenosine phosphates were determined in primary leaves of intact bean plants during normal senescence and compared to leaves in which senescence was delayed by application of benzyladenine (BA). In both cases there was a rise with time in the levels of glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate, and a decline in 2-phosphoglyceric acid, inorganic phosphate, and the adenosine phosphates (AMP, ADP, ATP). The levels of fructose 1,6-diphosphate remained fairly constant. Although the levels of hexose phosphates, adenosine phosphates, and inorganic phosphate were lower in the BA-treated leaves, the incorporation of 32P into these compounds by 3- and 6-week-old plants was higher than in the controls. These results suggest that the retardation of leaf senescence by BA in intact bean plants is associated with increased utilization of metabolites, indicating a more rapid turnover of the adenosine phosphates. It is concluded that this effect is brought about by a regulatory coordination of metabolic processes in relation to energy production and utilization.  相似文献   

15.
Resistance to cadmium, cobalt, zinc, and nickel in microbes.   总被引:23,自引:0,他引:23  
D H Nies 《Plasmid》1992,27(1):17-28
The divalent cations of cobalt, zinc, and nickel are essential nutrients for bacteria, required as trace elements at nanomolar concentrations. However, at micro- or millimolar concentrations, Co2+, Zn2+, and Ni2+ (and "bad ions" without nutritional roles such as Cd2+) are toxic. These cations are transported into the cell by constitutively expressed divalent cation uptake systems of broad specificity, i.e., basically Mg2+ transport systems. Therefore, in case of a heavy metal stress, uptake of the toxic ions cannot be reduced by a simple down-regulation of the transport activity. As a response to the resulting metal toxicity, metal resistance determinants evolved which are mostly plasmid-encoded in bacteria. In contrast to that of the cation Hg2+, chemical reduction of Co2+, Zn2+, Ni2+, and Cd2+ by the cell is not possible or sensible. Therefore, other than mutations limiting the ion range of the uptake system, only two basic mechanisms of resistance to these ions are possible (and were developed by evolution): intracellular complexation of the toxic metal ion is mainly used in eucaryotes; the cadmium-binding components are phytochelatins in plant and yeast cells and metallothioneins in animals, plants, and yeasts. In contrast, reduced accumulation based on an active efflux of the cation is the primary mechanism developed in procaryotes and perhaps in Saccharomyces cerevisiae. All bacterial cation efflux systems characterized to date are plasmid-encoded and inducible but differ in energy-coupling and in the number and types of proteins involved in metal transport and in regulation. In the gram-positive multiple-metal-resistant bacterium Staphylococcus aureus, Cd2+ (and probably Zn2+) efflux is catalyzed by the membrane-bound CadA protein, a P-type ATPase. However, a second protein (CadC) is required for full resistance and a third one (CadR) is hypothesized for regulation of the resistance determinant. The czc determinant from the gram-negative multiple-metal-resistant bacterium Alcaligenes eutrophus encodes proteins required for Co2+, Zn2+, and Cd2+ efflux (CzcA, CzcB, and CzcC) and regulation of the czc determinant (CzcD). In the current working model CzcA works as a cation-proton antiporter, CzcB as a cation-binding subunit, and CzcC as a modifier protein required to change the substrate specificity of the system from Zn2+ only to Co2+, Zn2+, and Cd2+.  相似文献   

16.
The physiological responses of alfalfa (Medicago sativa L. cv. Gilboa) to salinity (100 mM NaCl) and some inorganic nutrients (K+, Ca2+ and N as NO3-) were investigated. Salinity caused a substantial reduction in biomass, carbon assimilation rate, stomatal conductance, water use efficiency, leaf area, relative growth rate, NO3- content and nitrate reductase activity, whereas, transpiration rate was slightly affected. Inclusion of K+, Ca2+ and N as NO3- in plant nutrient medium in combination or alone brought about a marked stimulation in control plants and moderated the salinity caused reductions in NaCl treated plants. In addition, plants also exhibited differences in these parameters at two growth stages. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Ultraviolet difference spectra are produced by the binding of divalent metal ions to metal-free alkaline phosphatase (EC 3.1.3.1). The interaction of the apoprotein with Zn2+, Mn2+, Co2+ and Cd2+, which induce the tight binding of one phosphate ion per dimer, give distinctly different ultraviolet spectra changes from Ni2+ and Hg2+ which do not induce phosphate binding. Spectrophotometric titrations at alkaline pH of various metallo-enzymes reveal a smaller number of ionizable tyrosines and a greater stability towards alkaline denaturation in the Zn2+- and Mn2+-enzymes than in the Ni2+-, Hg2+- and apoenzymes. The Zn2+- and Mn2+-enzymes have CD spectra in the region of the aromatic transitions that are different from the CD spectra of the Ni2+-, Hg2+- and apoenzymes. Modifications of arginines with 2,3-butanedione show that a smaller number of arginine residues are modified in the Zn2+-enzyme than in the Hg2+-enzyme. The presented data indicate that alkaline phosphatase from Escherichia coli must have a well-defined conformation in order to bind phosphate. Some metal ions (i.e. Zn2+, Co2+, Mn2+ and Cd2+), when interacting with the apoenzyme, alter the conformation of the protein molecule in such a way that it is able to interact with substrate molecules, while other metal ions (i.e. Ni2+ and Hg2+) are incapable of inducing the appropriate conformational change of the apoenzyme. These findings suggest an important structural function of the first two tightly bound metal ions in enzyme.  相似文献   

18.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

19.
Cell-free extracts of Ureaplasma urealyticum strains Pi and T960 (CX8) (serovars 6 and 8, respectively) metabolized inorganic pyrophosphate (PPi). The inorganic pyrophosphatase (PPase) activity was greatest with Mg2+ as cofactor, but Mn2+ acted as a poor substitute. The PPases of the two serovars differed electrophoretically. Although the highest PPase activity was obtained using PPi as substrate, the enzyme could also utilize to a lesser degree both tripolyphosphate and trimetaphosphate. No activity was observed against beta-glycerophosphate, naphthyl phosphates, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, thiamin pyrophosphate, phosphoribosylpyrophosphate, ADP or ATP. Acid- and alkaline-phosphatase activities were observed with naphthyl phosphates as substrates, but they did not have the same electrophoretic mobility on gels as the PPase activity. U. urealyticum PPase was inhibited by oxidized glutathione, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, phenylglyoxal, p-chloromercuribenzoic acid, Mn2+, Zn2+ and Ca2+. Neither reduced glutathione, L-cysteine nor Co2+ enhanced activity. PPi can act as a substrate or regulator of certain metabolic reactions, and PPi metabolism can function in bacterial bioenergetics; its role in ureaplasmas is presently unclear.  相似文献   

20.
The review on the determination of phytate and inositol phosphates by Oberleas (1) indicates that most methods for the determination of phytate are derived from the method of Heubner and Stadler (2). This method is based on the principle that ferric ion forms a stable complex with phytate in dilute acid solution and is the only phosphate compound, at least in significant concentration in nature, with this property. However, the phytate values were high when we applied the procedure of Oberleas (3) to samples with high inorganic phosphate content such as rat feces or semipurified rat diets. This appeared to be a result of inorganic phosphate coprecipitating with ferric phytate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号