首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water‐limited, rain‐fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m?2 s?1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water‐use efficiencies were higher (2.4–8.1 mmol mol?1) than C3 averages (0.7–6.8 mmol mol?1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are important for understanding the advantages of C4 photosynthesis under field conditions.  相似文献   

3.
A generalized model for electron (e(-) ) transport limited C(4) photosynthesis of NAD-malic enzyme and NADP-malic enzyme subtypes is presented. The model is used to review the thylakoid stoichiometries in vivo under strictly limiting light conditions, using published data on photosynthetic quantum yield and on photochemical efficiencies of photosystems (PS). Model review showed that cyclic e(-) transport (CET), rather than direct O(2) photoreduction, most likely contributed significantly to the production of extra ATP required for the C(4) cycle. Estimated CET, and non-cyclic e(-) transport supporting processes like nitrogen reduction, accounted for ca. 45 and 7% of total photosystem I (PSI) e(-) fluxes, respectively. The factor for excitation partitioning to photosystem II (PSII) was ca. 0.4. Further model analysis, in terms of the balanced NADPH: ATP ratio required for metabolism, indicated that: (1) the Q-cycle is obligatory; (2) the proton: ATP ratio is 4; and (3) the efficiency of proton pumping per e(-) transferred through the cytochrome b(6) /f complex is the same for CET and non-cyclic pathways. The analysis also gave an approach to theoretically assess CO(2) leakiness from bundle-sheath cells, and projected a leakiness of 0.07-0.16. Compared with C(3) photosynthesis, the most striking C(4) stoichiometry is its high fraction of CET.  相似文献   

4.
5.
The present study was carried out to test the hypothesis thatelevated atmospheric CO2 (Ca) will alleviate over‐excitationof the C4 photosynthetic apparatus and decrease non‐photochemicalquenching (NPQ) during periods of limited water availability. Chlorophyll a fluorescencewas monitored in Sorghum bicolor plants grown under a free‐aircarbon‐dioxide enrichment (FACE) by water‐stress (Dry) experiment.Under Dry conditions elevated Ca increased the quantum yield ofphotosystem II (φPSII) throughout the day throughincreases in both photochemical quenching coefficient (qp)and the efficiency with which absorbed quanta are transferred toopen PSII reaction centres (Fv′/Fm′).However, in the well‐watered plants (Wets) FACE enhanced φPSIIonly at midday and was entirely attributed to changes in Fv′/Fm. Underfield conditions, decreases in φPSII under Dry treatmentsand ambient Ca corresponded to increases in NPQ but the de‐epoxidation stateof the xanthophyll pool (DPS) showed no effects. Water‐stress didnot lead to long‐term damage to the photosynthetic apparatus asindicated by φPSII and carbon assimilation measuredafter removal of stress conditions. We conclude that elevated Caenhances photochemical light energy usage in C4 photosynthesisduring drought and/or midday conditions. Additionally,NPQ protects against photo‐inhibition and photodamage. However,NPQ and the xanthophyll cycle were affected differently by elevatedCa and water‐stress.  相似文献   

6.
7.
During the evolution of angiosperms, C4 phosphoenolpyruvate carboxylases have evolved several times independently from ancestral non-photosynthetic isoforms. They show distinct kinetic and regulatory properties when compared with the C3 isozymes. To identify the evolutionary alterations which are responsible for C4-specific properties, particularly the increased tolerance towards the allosteric inhibitor L-malate, the photosynthetic phosphoenolpyruvate carboxylase of Flaveria trinervia Mohr C4 and its ortholog from the closely related C3 plant Flaveria pringlei Gand. were examined using reciprocal enzyme chimeras. The main determinants for a high tolerance towards L-malate were located in the C-terminal region of the C4 enzyme. The effect of interchanging the region between amino acids 296 and 437 was strongly dependent upon the activation of the enzyme by glucose-6-phosphate. This confirms earlier observations that this region is important for the regulation of the enzyme by glucose-6-phosphate and that it harbours determinants for the different response of the C3 and the C4 enzyme towards this allosteric activator. In addition, it was possible to demonstrate that the only C4-specific amino acid, a serine in the C-terminal part of the enzyme, is not involved in conferring an increased L-malate tolerance to the C4 enzyme.  相似文献   

8.
During the past 25 Myr, partial pressures of atmospheric CO2 (Ca) imposed a greater limitation on C3 than C4 photosynthesis. This could have important downstream consequences for plant nitrogen economy and biomass allocation. Here, we report the first phylogenetically controlled comparison of the integrated effects of subambient Ca on photosynthesis, growth and nitrogen allocation patterns, comparing the C3 and C4 subspecies of Alloteropsis semialata. Plant size decreased more in the C3 than C4 subspecies at low Ca, but nitrogen pool sizes were unchanged, and nitrogen concentrations increased across all plant partitions. The C3, but not C4 subspecies, preferentially allocated biomass to leaves and increased specific leaf area at low Ca. In the C3 subspecies, increased leaf nitrogen was linked to photosynthetic acclimation at the interglacial Ca, mediated via higher photosynthetic capacity combined with greater stomatal conductance. Glacial Ca further increased the biochemical acclimation and nitrogen concentrations in the C3 subspecies, but these were insufficient to maintain photosynthetic rates. In contrast, the C4 subspecies maintained photosynthetic rates, nitrogen‐ and water‐use efficiencies and plant biomass at interglacial and glacial Ca with minimal physiological adjustment. At low Ca, the C4 carbon‐concentrating mechanism therefore offered a significant advantage over the C3 type for carbon acquisition at the whole‐plant scale, apparently mediated via nitrogen economy and water loss. A limiting nutrient supply damped the biomass responses to Ca and increased the C4 advantage across all Ca treatments. Findings highlight the importance of considering leaf responses in the context of the whole plant, and show that carbon limitation may be offset at the expense of greater plant demand for soil resources such as nitrogen and water. Results show that the combined effects of low CO2 and resource limitation benefit C4 plants over C3 plants in glacial–interglacial environments, but that this advantage is lessened under anthropogenic conditions.  相似文献   

9.
C4 photosynthesis evolved multiple times in diverse lineages. Most physiological studies comparing C4 plants were not conducted at the low atmospheric CO2 prevailing during their evolution. Here, 24 C4 grasses belonging to three biochemical subtypes [nicotinamide adenine dinucleotide malic enzyme (NAD‐ME), phosphoenolpyruvate carboxykinase (PCK) and nicotinamide adenine dinucleotide phosphate malic enzyme (NADP‐ME)] and six major evolutionary lineages were grown under ambient (400 μL L?1) and inter‐glacial (280 μL L?1) CO2. We hypothesized that nitrogen‐related and water‐related physiological traits are associated with subtypes and lineages, respectively. Photosynthetic rate and stomatal conductance were constrained by the shared lineage, while variation in leaf mass per area (LMA), leaf N per area, plant dry mass and plant water use efficiency were influenced by the subtype. Subtype and lineage were equally important for explaining variations in photosynthetic nitrogen use efficiency (PNUE) and photosynthetic water use efficiency (PWUE). CO2 treatment impacted most parameters. Overall, higher LMA and leaf N distinguished the Chloridoideae/NAD‐ME group, while NADP‐ME and PCK grasses were distinguished by higher PNUE regardless of lineage. Plants were characterized by high photosynthesis and PWUE when grown at ambient CO2 and by high conductance at inter‐glacial CO2. In conclusion, the evolutionary and biochemical diversity among C4 grasses was aligned with discernible leaf physiology, but it remains unknown whether these traits represent ecophysiological adaptation.  相似文献   

10.
The 2H/1H ratio of carbon‐bound H in biolipids holds potential for probing plant lipid biosynthesis and metabolism. The biochemical mechanism underlying the isotopic differences between lipids from C3 and C4 plants is still poorly understood. GC‐pyrolysis‐IRMS (gas chromatography‐pyrolysis‐isotope ratio mass spectrometry) measurement of the 2H/1H ratio of leaf lipids from controlled and field grown plants indicates that the biochemical isotopic fractionation (ε2Hlipid_biochem) differed between C3 and C4 plants in a pathway‐dependent manner: ε2HC4 > ε2HC3 for the acetogenic pathway, ε2HC4 < ε2HC3 for the mevalonic acid pathway and the 1‐deoxy‐D‐xylulose 5‐phosphate pathway across all species examined. It is proposed that compartmentation of photosynthetic CO2 fixation into C4 mesophyll (M) and bundle sheath (BS) cells and suppression of photorespiration in C4 M and BS cells both result in C4 M chloroplastic pyruvate – the precursor for acetogenic pathway – being more depleted in 2H relative to pyruvate in C3 cells. In addition, compartmentation in C4 plants also results in (i) the transferable H of NADPH being enriched in 2H in C4 M chloroplasts compared with that in C3 chloroplasts for the 1‐deoxy‐D‐xylulose 5‐phosphate pathway pathway and (ii) pyruvate relatively 2H‐enriched being used for the mevalonic acid pathway in the cytosol of BS cells in comparison with that in C3 cells.  相似文献   

11.
Aim Based on the biochemical and physiological attributes of C4 grasses, and on the close association between decarboxylation pathways and the taxa in which they evolved, the hypotheses tested were: (1) that C4 grasses would become progressively more abundant as precipitation decreased, with grasses of the NADP‐me subtype more abundant in wetter sites and those of the NAD‐me subtype more common in arid regions; and (2) that the distribution of grass subfamilies would also be correlated with annual precipitation. Location The study was conducted along a precipitation gradient in central Argentina, from the eastern Pampas (>1000 mm year?1) to the western deserts and semi‐deserts near the Andes (<100 mm year?1). Methods Percentage of species and relative cover of C3 and C4 grasses (including C4 subtypes) in local floras from 15 lowland sites of central Argentina were obtained from our own unpublished data and from recently published floristic surveys. Pearson correlation coefficients were obtained between grass distribution parameters and the available climatic data. Results The percentage of C4 grasses increased towards the arid extreme and showed a strong negative correlation with annual rainfall (r = ?0.74, P < 0.01). Within the C4 subtypes, the NADP‐me species showed a higher proportional representation at the wetter extreme, whereas the representation of NAD‐me species increased towards the more arid extreme. The relationship of PEP‐ck species with climatic parameters in central Argentina was less evident. The distributions of the Panicoideae and Chloridoideae subfamilies along the precipitation gradient were diametrically opposed, with the Panicoideae positively (r = 0.86, P < 0.001) and the Chloridoideae negatively (r = ?0.87, P < 0.001) correlated with annual precipitation. Main conclusions Our data are consistent with the broad observation that C4 grasses tend to dominate in areas where the wet season falls in the warmer summer months. In agreement with previously reported results for Africa, Asia, Australia and North America, we describe here for the first time a significant relationship between annual precipitation and the prevalence of the NADP‐me and NAD‐me photosynthetic pathways along climatic gradients for the Neotropics. We also report for the first time that correlations between C4 species and annual rainfall are stronger when the relative cover of grass species is considered. The association of grass subfamilies Panicoideae and Chloridoideae with rainfall is as strong as that recorded for the NADP‐me and NAD‐me variants, respectively, suggesting that characteristics other than decarboxylation type may be responsible for the geographic patterns described in this study.  相似文献   

12.
C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) – regardless of the photosynthetic superiority of the C4 pathway – in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred. Received: 3 July 1997 / Accepted: 3 December 1997  相似文献   

13.
'C4 photosynthesis' refers to a suite of traits that increase photosynthesis in high light and high temperature environments. Most C4 plants are grasses, which dominate tropical and subtropical grasslands and savannas but are conspicuously absent from cold growing season climates. Physiological attributes of C4 photosynthesis have been invoked to explain C4 grass biogeography; however, the pathway evolved exclusively in grass lineages of tropical origin, suggesting that the prevalence of C4 grasses in warm climates could be due to other traits inherited from their non-C4 ancestors. Here we investigate the relative influences of phylogeny and photosynthetic pathway in determining the ecological distributions of C4 grasses in Hawaii. We find that the restriction of C4 grasses to warmer areas is due largely to their evolutionary history as members of a warm-climate grass clade, but that the pathway does appear to confer a competitive advantage to grasses in more arid environments.  相似文献   

14.
Theoretical considerations have suggested that there may be differences in photosynthetic nitrogen use efficiency (PNUE) among plants that use different biochemical variants of C(4) photosynthesis. To test this hypothesis we examined the leaf nitrogen content and photosynthetic rates of six grass species (three of C(4) subtype NAD-ME and three of C(4) subtype NADP-ME) grown over a wide range of nitrogen supply. While there were significant differences among the species in various traits, there were no consistent differences between the C(4) subtypes in either leaf nitrogen content at a given level of nitrogen supply or in the leaf nitrogen-photosynthesis relationship. We suggest that species-level variation in photosynthetic nitrogen use efficiency among C(4) species is large enough to mask any differences that may be due to C(4) subtype.  相似文献   

15.
The regional abundance of C4 grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C3 and C4 grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata , a unique grass species with both C3 and C4 subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C4 than C3 subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C4 plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C4 subspecies under irrigated conditions from spring through autumn. However, the C4 leaves were killed by winter frost, while photosynthesis continued in the C3 plants. Unexpectedly, the C4 subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C3 and C4 grasses.  相似文献   

16.

Background and Aims

The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.

Methods

Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.

Key Results

Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.

Conclusions

Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.  相似文献   

17.
We demonstrate for the first time the presence of species exhibiting C3-C4 intermediacy in Heliotropium (sensu lato), a genus with over 100 C3 and 150 C4 species. CO2 compensation points (Gamma) and photosynthetic water-use efficiencies (WUEs) were intermediate between C3 and C4 values in three species of Heliotropium: Heliotropium convolvulaceum (Gamma = 20 micromol CO2 mol(-1) air), Heliotropium racemosum (Gamma = 22 micromol mol(-1)) and Heliotropium greggii (Gamma = 17 micromol mol(-1)). Heliotropium procumbens may also be a weak C3-C4 intermediate based on a slight reduction in Gamma (48.5 micromol CO2 mol(-1)) compared to C3Heliotropium species (52-60 micromol mol(-1)). The intermediate species H. convolvulaceum, H. greggii and H. racemosum exhibited over 50% enhancement of net CO2 assimilation rates at low CO2 levels (200-300 micromol mol(-1)); however, no significant differences in stomatal conductance were observed between the C3 and C3-C4 species. We also assessed the response of Gamma to variation in O2 concentration for these species. Heliotropium convolvulaceum, H. greggii and H. racemosum exhibited similar responses of Gamma to O2 with response slopes that were intermediate between the responses of C3 and C4 species below 210 mmol O2 mol(-1) air. The presence of multiple species displaying C3-C4 intermediate traits indicates that Heliotropium could be a valuable new model for studying the evolutionary transition from C3 to C4 photosynthesis.  相似文献   

18.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

19.
C4 photosynthesis involves cell-to-cell exchange of photosyntheticintermediates between the Kranz mesophyll (KMS) and bundle sheath(BS) cells. This was believed to occur by simple diffusion throughplentiful plasmodesmatal (PD) connections between these celltypes. The model of C4 intermediates’ transport was elaboratedover 30 years ago and was based on experimental data derivedfrom measurements at the time. The model assumed that plasmodesmataoccupied about 3% of the interface between the KMS and BS cellsand that the plasmodesmata structure did not restrict metabolitemovement. Recent advances in the knowledge of plasmodesmatalstructure put these assumptions into doubt, so a new model ispresented here taking the new anatomical details into account.If one assumes simple diffusion as the sole driving force, thencalculations based on the experimental data obtained for C4grasses show that the gradients expected of C4 intermediatesbetween KMS and BS cells are about three orders of magnitudehigher than experimentally estimated. In addition, if one takesinto account that the plasmodesmata microchannel diameter mightconstrict the movement of C4 intermediates of comparable Stokes’radii, the differences in concentration of photosynthetic intermediatesbetween KMS and BS cells should be further increased. We believethat simple diffusion-driven transport of C4 intermediates betweenKMS and BS cells through the plasmodesmatal microchannels isnot adequate to explain the C4 metabolite exchange during C4photosynthesis. Alternative mechanisms are proposed, involvingthe participation of desmotubule and/or active mechanisms aseither apoplasmic or vesicular transport. Key words: C4 photosynthesis, grasses, modelling, plasmodesmata, symplasmic transport Received 10 October 2007; Revised 4 February 2008 Accepted 5 February 2008  相似文献   

20.
Despite mounting evidence showing that C4 plants can accumulate more biomass at elevated CO2 partial pressure (p(CO2)), the underlying mechanisms of this response are still largely unclear. In this paper, we review the current state of knowledge regarding the response of C4 plants to elevated p(CO2) and discuss the likely mechanisms. We identify two main routes through which elevated p(CO2) can stimulate the growth of both well-watered and water-stressed C4 plants. First, through enhanced leaf CO2 assimilation rates due to increased intercellular p(CO2). Second, through reduced stomatal conductance and subsequently leaf transpiration rates. Reduced transpiration rates can stimulate leaf CO2 assimilation and growth rates by conserving soil water, improving shoot water relations and increasing leaf temperature. We argue that bundle sheath leakiness, direct CO2 fixation in the bundle sheath or the presence of C3-like photosynthesis in young C4 leaves are unlikely explanations for the high CO2-responsiveness of C4 photosynthesis. The interactions between elevated p(CO2), leaf temperature and shoot water relations on the growth and photosynthesis of C4 plants are identified as key areas needing urgent research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号