首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes in lymphocytes by V(D)J recombinase is essential for immunological diversity in humans. These DNA rearrangements involve cleavage by the RAG1 and RAG2 (RAG1/2) recombinase enzymes at recombination signal sequences (RSS). This reaction generates two products, cleaved signal ends and coding ends. Coding ends are ligated by non-homologous end-joining proteins to form a functional Ig or TCR gene product, while the signal ends form a signal joint. In vitro studies have demonstrated that RAG1/2 are capable of mediating the transposition of cleaved signal ends into non-specific sites of a target DNA molecule. However, to date, in vivo transposition of signal ends has not been demonstrated. We present evidence of in vivo inter-chromosomal transposition in humans mediated by V(D)J recombinase. T-cell isolates were shown to contain TCRalpha signal ends from chromosome 14 inserted into the X-linked hypo xanthine-guanine phosphoribosyl transferase locus, resulting in gene inactivation. These findings implicate V(D)J recombinase-mediated transposition as a mutagenic mechanism capable of deleterious genetic rearrangements in humans.  相似文献   

2.
Raghavan SC  Tong J  Lieber MR 《DNA Repair》2006,5(2):278-285
In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining.  相似文献   

3.
The assembly of antigen receptor genes by V(D)J recombination is initiated by the RAG1/RAG2 protein complex, which introduces double-strand breaks between recombination signal sequences and their coding DNA. Truncated forms of RAG1 and RAG2 are functional in vivo and have been used to study V(D)J cleavage, hybrid joint formation and transposition in vitro. Here we have characterized the activities of the full-length proteins. Unlike core RAG2, which supports robust transposition in vitro, full-length RAG2 blocks transposition of signal ends following V(D)J cleavage. Thus, one role of this non-catalytic domain may be to prevent transposition in developing lymphoid cells. Although full-length RAG1 and RAG2 proteins rarely form hybrid joints in vivo in the absence of non-homologous end-joining factors, we show that the full-length proteins alone can catalyze this reaction in vitro.  相似文献   

4.
The lymphoid-specific proteins RAG1 and RAG2 initiate V(D)J recombination by introducing DNA double-strand breaks at the recombination signal sequences (RSSs). In addition to DNA cleavage, the versatile RAG1/2 complex is capable of catalyzing several other reactions, including hybrid joint formation and the transposition of signal ends into a second DNA. Here we show that the RAG1/2 complex also mediates an unusual strand transfer reaction, inverse transposition, in which non-RSS DNA is cleaved and subsequently transferred to an RSS sequence by direct transesterification. Characterization of the reaction products and requirements suggests that inverse transposition is related to both hybrid joint formation and signal-end transposition. This aberrant activity provides another possible mechanism for some chromosomal translocations present in lymphoid tumors.  相似文献   

5.
V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.  相似文献   

6.
V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations.  相似文献   

7.
RAG-1 and RAG-2 initiate V(D)J recombination by introducing DNA breaks at recombination signal sequences flanking a pair of antigen receptor gene segments. Occasionally, the RAG proteins mediate two other alternative DNA rearrangements in vivo: the rejoining of signal and coding ends and the transposition of signal ends into unrelated DNA. In contrast, truncated, catalytically active "core" RAG proteins readily catalyze these reactions in vitro, suggesting that full-length RAG proteins directly or indirectly suppress these undesired reactions in vivo. To discriminate between direct and indirect suppression models, full-length RAG proteins were purified and characterized in vitro. From mammalian cells, full-length RAG-1 is readily purified with core RAG-2 but not full-length RAG-2 and vice versa. Despite differences in DNA binding activity, recombinase containing either core or full-length RAG-1 or RAG-2 possess comparable cleavage, rejoining, and end-processing activity, as well as similar usage preferences for canonical versus cryptic recombination signals. However, recombinase containing full-length RAG-2, but not full-length RAG-1, exhibits dramatically reduced transposition activity in vitro. These data suggest RAG-mediated transposition and rejoining are differentially regulated by the full-length RAG proteins in vivo (the former directly by RAG-2 and the latter indirectly through other factors) and argue that noncore portions of the RAG proteins have little or no direct influence over V(D)J recombinase site specificity.  相似文献   

8.
Antigen receptor genes are assembled during lymphoid development by a specialized recombination reaction normally observed only in cells of the vertebrate immune system. Here, we show that expression in Saccharomyces cerevisiae of murine RAG1 and RAG2, the lymphoid-specific components of the V(D)J recombinase, is sufficient to induce V(D)J cleavage and rejoining in this lower eukaryote. The RAG proteins cleave recombination substrates introduced into yeast cells, generating signal ends that can be joined to form signal joints. These signal joints are precise, as in mammalian cells, and their formation is dependent on a yeast nonhomologous end-joining protein, the XRCC4 homolog LIF1. Moreover, joining of SmaI-generated blunt ends is generally imprecise in the yeast strain used here, suggesting that the RAG proteins influence signal-end joining. Cleaved signal ends are also transposed into new sites in DNA, allowing RAG-induced transposition to be studied in vivo.  相似文献   

9.
Following V(D)J cleavage, the newly liberated DNA signal ends can be either fused together into a signal joint or used as donor DNA in RAG-mediated transposition. We find that both V(D)J cleavage and release of flanking coding DNA occur before the target capture step of transposition can proceed; no coding DNA is ever detected in the target capture complex. Separately from its role in V(D)J cleavage, the DDE motif of the RAG1/2 active site is specifically required for target DNA capture. The requirement for cleavage and release of coding DNA prior to either physical target binding or functional target commitment suggests that the RAG1/2 transposase contains a single binding site for non-RSS DNA that can accommodate either target DNA or coding DNA, but not both together. Perhaps the presence of coding DNA may aid in preventing transpositional resolution of V(D)J recombination intermediates.  相似文献   

10.
Two lymphoid-specific proteins, RAG1 and RAG2, are required for the initiation of the V(D)J recombination in vitro. The V(D)J cleavage that is mediated by RAG proteins at the border between the coding and signal sequences results in the production of a hairpin at the coding end and a double-stranded break at the signal end. Two hairpin coding ends are re-opened, modified, and sealed; whereas, the signal ends are directly ligated. Here I report that only RAG1 can carry out a distinct endonucleolytic activity in vitro using an oligonucleotide substrate that is tethered by a short single-stranded DNA. The purified RAG1 protein alone formed a nick at the near position to the recombination signal sequence. This endonucleolytic activity was eliminated by immunoprecipitation using the RAG1-specific antibody, and required the 3'-hydroxy group. All of the RAG1 mutants that were incapable of the nick and hairpin formation in the V(D)J cleavage analysis also showed this new endonucleolytic activity. This suggests that the nicking activity that was observed might be functionally different from the nick formation in the V(D)J cleavage.  相似文献   

11.
In addition to their essential roles in V(D)J recombination, the RAG proteins have been found to catalyze transposition in vitro, but it has been difficult to demonstrate transposition by the RAG proteins in vivo in vertebrate cells. As genomic instability and chromosomal translocations are common outcomes of transposition in other species, it is critical to understand if the RAG proteins behave as a transposase in vertebrate cells. To facilitate this, we have developed an episome-based assay to detect products of RAG-mediated transposition in the human embryonic kidney cell line 293T. Transposition events into the target episome, accompanied by characteristic target site duplications, were detected at a low frequency using RAG1 and either truncated "core" RAG2 or full-length RAG2. More frequently, insertion of the RAG-generated signal end fragment into the target was accompanied by deletions or more complex rearrangements, and our data indicate that these events occur by a mechanism that is distinct from transposition. An assay to detect transposition from an episome into the human genome failed to detect bona fide transposition events but instead yielded chromosome deletion and translocation events involving the signal end fragment mobilized by the RAG proteins. These assays provide a means of assessing RAG-mediated transposition in vivo, and our findings provide insight into the potential for the products of RAG-mediated DNA cleavage to cause genome instability.  相似文献   

12.
Ku, a heterodimer of 70- and 86-kDa subunits, serves as the DNA binding component of the DNA-dependent protein kinase (DNA-PK). Cells deficient for the 86-kDa subunit of Ku (Ku86-deficient cells) lack Ku DNA end-binding activity and are severely defective for formation of the standard V(D)J recombination products, i.e., signal and coding joints. It has been widely hypothesized that Ku is required for protection of broken DNA ends generated during V(D)J recombination. Here we report the first analysis of V(D)J recombination intermediates in a Ku-deficient cell line. We find that full-length, ligatable signal ends are abundant in these cells. These data show that Ku86 is not required for the protection or stabilization of signal ends, suggesting that other proteins may perform this function. The presence of high levels of signal ends in Ku-deficient cells prompted us to investigate whether these ends could participate in joining reactions. We show that nonstandard V(D)J recombination products (hybrid joints), which involve joining a signal end to a coding end, form with similar efficiencies in Ku-deficient and wild-type fibroblasts. These data support the surprising conclusion that Ku is not required for some types of V(D)J joining events. We propose a novel RAG-mediated joining mechanism, analogous to disintegration reactions performed by retroviral integrases, to explain how formation of hybrid joints can bypass the requirement for Ku and DNA-PK.  相似文献   

13.
V(D)J recombination entails double-stranded DNA cleavage at the antigen receptor loci by the RAG1/2 proteins, which recognize conserved recombination signal sequences (RSSs) adjoining variable (V), diversity (D) and joining (J) gene segments. After cleavage, RAG1/2 remain associated with the coding and signal ends (SE) in a post-cleavage complex (PCC), which is critical for their proper joining by classical non-homologous end joining (NHEJ). Certain mutations in RAG1/2 destabilize the PCC, allowing DNA ends to access inappropriate repair pathways such as alternative NHEJ, an error-prone pathway implicated in chromosomal translocations. The PCC is thus thought to discourage aberrant rearrangements by controlling repair pathway choice. Since interactions between RAG1/2 and the RSS heptamer element are especially important in forming the RAG-SE complex, we hypothesized that non-consensus heptamer sequences might affect PCC stability. We find that certain non-consensus heptamers, including a cryptic heptamer implicated in oncogenic chromosomal rearrangements, destabilize the PCC, allowing coding and SEs to be repaired by non-standard pathways, including alternative NHEJ. These data suggest that some non-consensus RSS, frequently present at chromosomal translocations in lymphoid neoplasms, may promote genomic instability by a novel mechanism, disabling the PCC’s ability to restrict repair pathway choice.  相似文献   

14.
RAG1 and RAG2 (RAGs) initiate V(D)J recombination by introducing breaks between two coding segments and flanking recombination signals (RSs). Nonhomologous end-joining (NHEJ) proteins then join the coding segments and join the RSs. In wild-type cells, both full-length and truncated ("core") RAGs lead to accumulation of "hybrid" V(D)J joins, in which an RS is appended to a different coding sequence. We now show that while hybrid joins do not accumulate in NHEJ-deficient cells that express full-length RAGs, they do accumulate in NHEJ-deficient cells that express the core RAGS; like those catalyzed by core RAGs in vitro, however, they are sealed on just one DNA strand. These results suggest a potential role for the non-core regions in repressing potentially harmful transposition events.  相似文献   

15.
V(D)J recombination is initiated by a specialized transposase consisting of RAG-1 and RAG-2. Because full-length RAG proteins are insoluble under physiologic conditions, most previous analyses of RAG activity in vitro have used truncated core RAG-1 and RAG-2 fragments. These studies identified an intermediate in V(D)J recombination, the signal end complex (SEC), in which core RAG proteins remain associated with recombination signal sequences at the cleaved signal ends. From transfected cells expressing affinity-tagged RAG proteins, we have isolated in vivo assembled SECs containing full-length RAG proteins and cleaved recombination substrates. SEC formation in vivo did not require the repair proteins DNA-dependent protein kinase, Ku80, or XRCC4. In the presence of full-length RAG-2, SEC formation in vivo was cell cycle-regulated and restricted to the G(0)/G(1) phases. In contrast, complexes accumulated throughout cell cycle in cells expressing a RAG-2 CDK2 phosphorylation site mutant. Both core and full-length SECs supported transposition in vitro with similar efficiencies. Intracellular SECs, which are likely to persist in the absence of coding ends, represent potential donors whose transposition is not suppressed by the non-core regions of the RAG proteins.  相似文献   

16.
The only established physiological function of the V(D)J recombinase, comprising RAG1 and RAG2, is to perform DNA cleavage. The molecular roles of RAG2 in cleavage, the mechanisms used to join the broken DNA ends, and the identity of nuclease(s) that open the hairpin coding ends have been unknown. Site-directed mutagenesis targeting each conserved basic amino acid in RAG2 revealed several separation-of-function mutants that address these questions. Analysis of these mutants reveals that RAG2 helps recognize or cleave distorted DNA intermediates and plays an essential role in the joining step of V(D)J recombination. Moreover, the discovery that some mutants block RAG-mediated hairpin opening in vitro provides a critical link between this biochemical activity and coding joint formation in vivo.  相似文献   

17.
The V(D)J recombinase, a complex of RAG1 and RAG2, carries out a gene rearrangement process that is required for the achievement of diverse antigen receptor repertoires during the early developmental stage of lymphocytes. It recognizes a specific site spanning the coding DNA region of antigen receptor genes and produces double-stranded DNA breaks at the board between coding and signal sequences. Two broken DNA ends are joined by a double-stranded break repair system. Both RAG (recombination activation gene) 1 and RAG2 proteins are absolutely required for this process although the catalytic residues of V(D)J recombinase are exclusively located at RAG1 according to recent mutational analyses. In this study we identified some acidic amino acid residues in RAG1 responsible for the interaction with RAG2. Mutation on these residues caused a decrease of cleavage activity in vitro and failure of RAG-RSS DNA synaptic complex formation. This result is complementary to previous reports in which positively charged amino acids in RAG2 play an important role in RAG1 binding.  相似文献   

18.
The V(D)J recombinase recognizes a pair of immunoglobulin or T-cell receptor gene segments flanked by recombination signal sequences and introduces double-strand breaks, generating two signal ends and two coding ends. Broken coding ends were initially identified as covalently closed hairpin DNA molecules. Before recombination, however, the hairpins must be opened and the ends must be modified by nuclease digestion and N-region addition. We have now analyzed nonhairpin coding ends associated with various immunoglobulin gene segments in cells undergoing V(D)J recombination. We found that these broken DNA ends have different nonrandom 5′-strand deletions which were characteristic for each locus examined. These deletions correlate well with the sequence characteristics of coding joints involving these gene segments. In addition, unlike broken signal ends, these nonhairpin coding-end V(D)J recombination reaction intermediates have 3′ overhanging ends. We discuss the implications of these results for models of how sequence modifications occur during coding-joint formation.  相似文献   

19.
The RAG proteins cleave at V(D)J recombination signal sequences then form a postcleavage complex with the broken ends. The role of this complex in end processing and joining, if any, is undefined. We have identified two RAG1 mutants proficient for DNA cleavage but severely defective for coding and signal joint formation, providing direct evidence that RAG1 is critical for joining in vivo and strongly suggesting that the postcleavage complex is important in end joining. We have also identified a RAG1 mutant that is severely defective for both hairpin opening in vitro and coding joint formation in vivo. These data suggest that the hairpin opening activity of the RAG proteins plays an important physiological role in V(D)J recombination.  相似文献   

20.
Melek M  Gellert M 《Cell》2000,101(6):625-633
During B and T cell development, the RAG1/RAG2 protein complex cleaves DNA at conserved recombination signal sequences (RSS) to initiate V(D)J recombination. RAG1/2 has also been shown to catalyze transpositional strand transfer of RSS-containing substrates into target DNA to form branched DNA intermediates. We show that RAG1/2 can resolve these intermediates by two pathways. RAG1/2 catalyzes hairpin formation on target DNA adjacent to transposed RSS ends in a manner consistent with a model leading to chromosome translocations. Alternatively, disintegration removes transposed donor DNA from the intermediate. At high magnesium concentrations, such as are present in mammalian cells, disintegration is the favored pathway of resolution. This may explain in part why RAG1/2-mediated transposition does not occur at high frequency in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号