首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colchicine inhibited the activity of the galactosyl- and sialyltransferases of rat liver Golgi membranes. The sialyltransferase was more sensitive to the drug than galactosyltransferase since it was inhibited to a greater extent and at lower concentrations of colchicine than the galactosyltransferase. Two soluble enzymes, i.e. that from rat serum and that isolated from bovine milk, were not inhibited by colchicine. Even with very high concentrations of colchicine a marked stimulation of activity was observed. The data suggest that the inhibition observed in the Golgi membranes is in some way related to the arrangement of the enzymes in the lipid bilayer. In support of this hypothesis, the milk galactosyltransferase became very sensitive to colchicine after incorporation of the enzyme into lipid vesicles. The incorporation of colchicine into Golgi membranes was shown to decrease the order parameter as determined by electron spin resonance which reflects an increased fluidity of the Golgi membranes. A change in fluidity may be responsible for the inhibition of enzyme activity at least in part.  相似文献   

2.
Some properties of two distinct rat brain sialyltransferases, acting on fetuin and asialofetuin, respectively, were investigated. These two membrane-bound enzymes were both strongly inhibited by charged phospholipids. Neutral phospholipids were without effect except lysophosphatidylcholine (lysoPC) which modulated these two enzymes in a different way. At 5 mM lysoPC, the fetuin sialyltransferase was solubilized and highly activated while the asialofetuin sialyltransferase was inhibited. Preincubation of brain microsomes with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), known as a specific anion inhibitor and a non-penetrating probe, led to a moderate inhibition of the asialofetuin sialyltransferase just as in the case of the ovomucoid galactosyltransferase (used here as a marker for the luminal side of the Golgi membrane); under similar conditions, the fetuin sialyltransferase was strongly inhibited. In the presence of Triton X-100, which induced a disruption of membranes, all three enzymes were strongly inhibited by DIDS. Trypsin action on intact membranes showed that asialofetuin sialyltransferase, galactosyltransferase and fetuin sialyltransferase were all slightly inhibited. After membrane disruption by Triton X-100, the first two enzymes were completely inactivated by trypsin while the fetuin sialyltransferase was quite insensitive to trypsin treatment. From these data, we suggest that the fetuin sialyltransferase, accessible to DIDS, is an external enzyme, oriented closely towards the cytoplasmic side of the brain microsomal vesicles (endoplasmic and Golgi membranes), whereas the asialofetuin sialyltransferase is an internal enzyme, oriented in a similar manner to the galactosyltransferase. Moreover, the anion site (nucleotide sugar binding site) of the fetuin sialyltransferase must be different from its active site, as this enzyme, when solubilized, is strongly inhibited by DIDS while no degradation is observed in the presence of trypsin.  相似文献   

3.
Recent studies from this laboratory have suggested that rat-liver Golgi apparatus derived membranes contain different proteins which can translocate in vitro CMP-N-acetylneuraminic acid, GDP-fucose and adenosine 3'-phosphate 5'-phosphosulfate from an external compartment into a lumenal one. The aim of this study was to define the role of the nucleotide, sugar and sulfate moieties of sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate in translocation of these latter compounds across Golgi vesicle membranes. Indirect evidence was obtained suggesting that the nucleotide (but not sugar or sulfate) is a necessary recognition feature for binding to the Golgi membrane (measured as inhibition of translocation) but is not sufficient for overall translocation; this latter event also depends on the type of sugar. Important recognition features for inhibition of translocation of the above sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate were found to be the type of nucleotide base (purine or pyrimidine) and the position of the phosphate group in the ribose. Thus, UMP and CMP were found to be competitive inhibitors of translocation of CMP-N-acetylneuraminic acid, while AMP did not inhibit. Structural features of the nucleotides which were less important in inhibition of translocation (and thus presumably in binding) of the above sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate were the number of phosphate groups in the nucleotide (CDP and CMP inhibited to a similar extent), the presence of ribose or deoxyribose in the nucleotide, a replacement of hydrogen in positions 5 of pyrimidines or 8 in purines by halogens or an azido group. The sugar or sulfate did not inhibit translocation of the above sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate into Golgi vesicles and therefore appear not to be involved in their binding to the Golgi membrane.  相似文献   

4.
Recent studies from this laboratory have suggested that rat-liver Golgi apparatus derived membranes contain different proteins which can translocate in vitro CMP-N-acetylneuraminic acid, GDP-fucose and adenosine 3′-phosphate 5′-phosphosulfate from an external compartment into a lumenal one. The aim of this study was to define the role of the nucleotide, sugar and sulfate moieties of sugar nucleotides and adenosine 3′-phosphate 5′-phosphosulfate in translocation of these latter compounds across Golgi vesicle membranes. Indirect evidence was obtained suggesting that the nucleotide (but not sugar or sulfate) is a necessary recognition feature for binding to the Golgi membrane (measured as inhibition of translocation) but is not sufficient for overall translocation; this latter event also depends on the type of sugar. Important recognition features for inhibition of translocation of the above sugar nucleotides and adenosine 3′-phosphate 5′-phosphosulfate were found to be the type of nucleotide base (purine or pyrimidine) and the position of the phosphate group in the ribose. Thus, UMP and CMP were found to be competitive inhibitors of translocation of CMP-N-acetylneuraminic acid, while AMP did not inhibit. Structural features of the nucleotides which were less important in inhibition of translocation (and thus presumably in binding) of the above sugar nucleotides and adenosine 3′-phosphate 5′-phosphosulfate were the number of phosphate groups in the nucleotide (CDP and CMP inhibited to a similar extent), the presence of ribose or deoxyribose in the nucleotide, a replacement of hydrogen in positions 5 of pyrimidines or 8 in purines by halogens or an azido group. The sugar or sulfate did not inhibit translocation of the above sugar nucleotides and adenosine 3′-phosphate 5′-phosphosulfate into Golgi vesicles and therefore appear not to be involved in their binding to the Golgi membrane.  相似文献   

5.
UDP-galactose appears to be produced on one side of a membrane barrier, opposite the galactosyltransferases that use it as a sugar donor. The translocation of activated galactose across membranes was studied in rat submaxillary-gland microsomal vesicles and in rat liver Golgi vesicles. When these intact vesicles containing the acceptor, N-acetylglucosamine, were incubated in the presence of UDP-galactose and two inhibitors of galactosyltransferase activity, the product, N-acetyl-lactosamine, formed within the vesicles. Thus at least the galactose moiety of UDP-galactose crossed the membranes. When intact Golgi vesicles were incubated with UDP-galactose labelled in both the uridine and the galactose moieties, labelled N-acetyllactosamine was again produced in the vesicles, but less than stoichiometric amounts of the uridine label was found there. Calculation of internal and external concentrations of UMP, a major product released from the cleaved uridine moiety, showed that the vesicles were actually enriched in UMP. When free UMP was incubated with the vesicles, this enrichment did not occur. This result was direct evidence for facilitated transport of UDP-galactose into the Golgi for use by galactosyltransferase.  相似文献   

6.
Following administration of cycloheximide to rats in order to deplete the liver of secretory products, Golgi membranes have been isolated largely free of internal contents. These membranes have a high specific activity of galactosyltransferase (400 times that of the homogenate) and are thought to be derived from the trans Golgi. Their phospholipid and polypeptide composition resembles that of Golgi membranes prepared by other procedures but their triacylglycerol and cholesterol contents are greatly reduced. These results conflict with previous reports that trans Golgi membranes are rich in cholesterol.  相似文献   

7.
The effects of the membrane perturbing reagents linoleic acid and benzyl alcohol on the activities of four rat liver Golgi membrane enzymes, N-acetylglucosaminyl-, N-acetylgalactosaminyl-, galactosyl-, and sialytransferases and several soluble glycosyltransferases, bovine milk galactosyl- and N-acetylglucosaminyltransferases and porcine submaxillary N-acetylgalactosaminyltransferases have been studied. In rat liver Golgi membranes, linoleic acid inhibited the activities of N-acetylgalactosaminyl- and galactosyltransferases by 50% or greater, sialyltransferase by 10–15%, and N-acetylglucosaminyltransferase not at all. The isolated bovine milk N-acetylglucosaminyltransferase and porcine submaxillary N-acetylgalactosylaminyltranferase were not inhibited but bovine milk galactosyltransferase was inhibited by 95% or greater. The inhibition by linoleic acid on Golgi membrane galactosyltransferase appears to be a direct effect of the reagent on the enzyme. Incorporation of bovine milk galactosyltransferase into liposomes formed from saturated phospholipids, DMPC, DPPC, and DSPC (dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholine) prevented inhibition of the enzyme activity suggesting that the lipid formed a barrier which did not allow linoleic acid access to the enzyme. The water soluble benzyl alcohol was more effective in inhibiting enzymes of the isolated rat liver Golgi complex. All four glycosyltransferases were inhibited, the N-acetylglucosaminyl- and N-acetylgalactosaminyltransferases by more than 95%. A higher concentration of benzyl alcohol was necessary to inhibit the galactosyltransferases than was required for the other Golgi enzymes. Benzyl alcohol also inhibited the isolated bovine milk N-acetylglucosaminyl- and galactosyltransferases 90% to 95%, respectively, but did not affect the isolated porcine submaxillary gland N-acetylgalactosaminyltransferase. Benzyl alcohol did not inhibit the milk galactosyltransferase incorporated into DMPC or DPPC liposomes but showed a complex effect on the activity of the enzyme incorporated into DSPC vesicles, a stimulation of activity at low concentrations followed by an inhibition. A lipid environment consisting of saturated lipids appears to present a barrier to inhibiting substances such as linoleic acid and benzyl alcohol, or lipid may stabilize the active conformation of the enzyme. The different effects of these reagents on four transferases of the Golgi complex suggest that the lipid environment around these enzymes may be different for each transferase.  相似文献   

8.
The effects of puromycin on galactosyltransferase from four sources, rat liver and lactating sheep mammary Golgi membranes, bovine colostrum and human serum have been investigated. We do not find that the synthesis of N-acetyllactosamine is much inhibited, even in the presence of 3mM puromycin. This is in contrast to previously reported results for rat liver Golgi membranes. We interpret the low level of inhibition observed in terms of pH effects.  相似文献   

9.
1. The administration of d-galactosamine leads to inhibition of protein and glycoprotein secretion by rat liver. To test the secretory function, the secretion times for galactose-and fucose-containing glycoproteins were determined; they were lengthened from 6 to 9min and from 8 to 13min respectively. 2. The Golgi apparatus was enriched 100-120-fold relative to the homogenate. A new linked-assay system for the marker enzyme, UDP-galactose-N-acetyl-d-glucosamine galactosyltransferase, is presented. The activity of the enzyme was measured spectrophotometrically by following the formation of UDP coupled to nicotinamide nucleotide reduction. The Michaelis constants were calculated to be 0.11mm for UDP-galactose with N-acetyl-d-glucosamine as exogenous acceptor and 19mm for N-acetyl-d-glucosamine itself. 3. The physiological substrate of the galactosyltransferase, UDP-galactose, can be replaced by UDP-galactosamine, which accumulates after d-galactosamine administration. Under conditions in vitro the rate of d-galactosamine transfer to an endogenous acceptor protein of the Golgi fraction reaches 9% of that with d-galactose; this finding is noteworthy, because normally a non-acetylated amino sugar does not occur in glycoproteins. 4. The albumin content of the Golgi-rich fraction was diminished to 55% of the reference value 6h after the injection of 375mg of d-galactosamine hydrochloride/kg body wt. The transfer of d-[1-(14)C]galactose to an endogenous acceptor protein fell to 60% compared with Golgi-rich fractions from untreated animals. Analysis of the Golgi-rich fraction by polyacrylamide-gel electrophoresis showed a decrease or loss of several protein bands. 5. Protein synthesis can be restored by up to 80% if the UTP pool, decreased after d-galactosamine administration, is filled up by several injections of uridine. 6. From the results presented it can be concluded that the disturbed secretion of proteins and glycoproteins was due to a cumulative effect of galactosamine by: (a) inhibition of protein synthesis leading to a diminution of the endogenous acceptor pool of the galactosyltransferase; (b) inhibition of the galactosyltransferase activity by galactosamine metabolites and (c) replacement of UDP-galactose by UDP-galactosamine.  相似文献   

10.
《The Journal of cell biology》1994,127(6):1815-1827
Mastoparan is a cationic amphipathetic peptide that activates trimeric G proteins, and increases binding of the coat protein beta-COP to Golgi membranes. ARFp13 is a cationic amphipathic peptide that is a putative specific inhibitor of ARF function, and inhibits coat protein binding to Golgi membranes. Using a combination of high resolution, three- dimensional electron microscopy and cell-free Golgi transport assays, we show that both of these peptides inhibit in vitro Golgi transport, not by interfering in the normal functioning of GTP-binding proteins, but by damaging membranes. Inhibition of transport is correlated with inhibition of nucleotide sugar uptake and protein glycoslation, a decrease in the fraction of Golgi cisternae exhibiting normal morphology, and a decrease in the density of Golgi-coated buds and vesicles. At peptide concentrations near the IC50 for transport, those cisternae with apparently normal morphology had a higher steady state level of coated buds and vesicles. Kinetic analysis suggests that this increase in density was due to a decrease in the rate of vesicle fission. Pertussis toxin treatment of the membranes appeared to increase the rate of vesicle formation, but did not prevent the membrane damage induced by mastoparan. We conclude that ARFp13 is not a specific inhibitor of ARF function, as originally proposed, and that surface active peptides, such as mastoparan, have the potential for introducing artifacts that complicate the analysis of trimeric G protein involvement in regulation of Golgi vesicle dynamics.  相似文献   

11.
Immunofluorescence and cryoimmunoelectron microscopy were used to examine the morphologic and functional effects on the Golgi complex when protein transport is blocked at the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) in HeLa cells incubated at low temperature (15 degrees C). At this temperature, the Golgi complex showed long tubules containing resident glycosylation enzymes but not matrix proteins. These Golgi-derived tubules also lacked anterograde (VSV-G) or retrograde (Shiga toxin) cargo. The formation of tubules was dependent on both energy and intact microtubule and actin cytoskeletons. Conversely, brefeldin A or cycloheximide treatments did not modify the appearance. When examined at the electron microscope, Golgi stacks were long and curved and appeared connected to tubules immunoreactive to galactosyltransferase antibodies but devoid of Golgi matrix proteins. Strikingly, COPI proteins moved from membranes to the cytosol at 15 degrees C, which could explain the formation of tubules.  相似文献   

12.
Fat globule membranes have been isolated from bovine colostrum and bovine milk by the dispersion of the fat in sucrose solutions at 4 degrees C and fractionation by centrifugation through discontinuous sucrose gradients. The morphology and enzymic characteristics of the separated fractions were examined. Fractions comprising a large proportion of the total extracted membrane were thus obtained having high levels of the Golgi marker enzymes UDP-galactose N-acetylglucosamine beta-4-galactosyltransferase and thiamine pyrophosphatase. A membrane-derived form of the galactosyltransferase has been solubilized from fat and purified to homogeneity. This enzyme is larger in molecular weight than previously studied soluble galactosyltransferases, but resembles in size the galactosyltransferase of lactating mammary Golgi membranes. In contrast, when fat globule membranes were prepared by traditional procedures, which involved washing the fat at higher temperatures, before extraction, galactosyltransferase was not present in the membranes, having been released into supernatant fractions, When the enzyme released by this procedure was partially purified and examined by gel filtration, it was found to be of a degraded form resembling in size the soluble galactosyltransferase of milk. The release is therefore attributed to the action of proteolytic enzymes. Our observations contrast with previous biochemical studies which suggested that Golgi membranes do not contribute to the milk fat globule membrane. They are, however, consistent with electron microscope studies of the fat secretion process, which indicate that secretory vesicle membranes, derived from the Golgi apparatus, may provide a large proportion of the fat globule membrane.  相似文献   

13.
Galactosyltransferase was purified from rat liver Golgi membranes. The Triton X-100, used to solubilize the enzyme was removed immediately prior to the lipid interaction studies. In lipid vesicles, prepared from a variety of phosphatidylcholines (PCs), including egg PC, DOPC, DMPC, DPPC and DSPC, the ability of the lipids to stimulate the enzyme decreased in the order egg PC greater than DOPC greater than DMPC greater than DPPC greater than DSPC, i.e. the lower the transition temperature (Tc) the greater the stimulation of the enzyme. A second, neutral lipid, phosphatidylethanolamine was used to permit a comparison of the effect of a different head group of the same net charge at neutral pH. The PEs included, egg PE, soy PE, Pl-PE, PE(PC) and DPPE in order of increasing Tc. The effect of the PEs was opposite to that of the PCs, i.e. the higher the Tc, the greater the stimulation of the enzyme. In fact egg PE and soy PE which have the lowest Tc values were inhibitory. Thus the modulation of the Golgi membrane galactosyltransferase by these lipids was different from that reported earlier for the bovine milk galactosyltransferase. The effects of two acidic lipids, egg phosphatidic acid (PA) and egg phosphatidylglycerol (PG) were studied also. Both totally inhibited the enzyme even at low concentrations of lipid, however, the PA was more effective than PG. In mixtures of neutral lipid (PC) and acidic lipid (PA or PG), the effect of the acidic lipid dominated. Even in the presence of excess PC, total inhibition of the enzyme was observed. It was concluded that the enzyme bound the acidic lipid preferentially to itself. The choice of the lipids allowed us to make several direct comparisons concerning the effect of the nature of the lipid head group on the activity of the enzyme. For example PE(PC), egg PA and egg PG would have fatty acid chains identical to egg PC since these three lipids are all prepared by modification of egg PC. As well, DPPE differs from DPPC only by nature of the head group. These comparisons indicated that not only the net charge but also chemical nature of the head group were important in the lipid modulation of Golgi galactosyltransferase.  相似文献   

14.
The activity of UDPgalactose-asialo-mucin galactosyltransferase (EC 2.4.1.74) in microsomal and Golig subfractions was stimulated 2.4-fold after disruption of the membrane permeability barrier by hypotonic incubation. In the presence of Triton X-100, galactose transfer to asialo-mucin was increased 12-fold in rough microsomes and 5-fold in smooth microsomes both with and without hypotonic incubation; while in the Golgi subfractions no stimulation by detergent was observed. These experiments indicate differences in enzyme-lipid or enzyme-protein interactions in microsomes and Golgi membranes. Furthermore, these results strongly support the conclusion that the UDP-galactose-asialo-mucin galactosyltransferase activity in microsomal fractions is not due to contamination by Golgi vesicles but represents an enzyme activity endogenous to the endoplasmic reticulum.  相似文献   

15.
UDPgalactosyltransferase activity (UDPgalactose:mucopolysaccharide galactosyltransferase, EC 2.4.1.74) was measured in a well-characterized fraction of Golgi membranes in the presence of UDPgalactose and exogenous acceptor sites. Substrate saturation for 0.05 mg Golgi protein was achieved at a concentration of 4.6 mM UDPgalactose. Desialylated mucin proved to be the most suitable acceptor protein. Access to galactose acceptor sites was not rate limiting for the reaction when 20 mg of asialo-mucin/ml of incubation mixture was used. With these concentrations of substrates the use of nucleotides to inhibit pyrophosphatases and of detergents to perturb the membrane structure was not necessary and proved, in fact, to be inhibitory to galactose transfer. UDPgalactosyl:asialo-mucin transferase activity in Golgi membranes was 230 nmol galactose transferred/mg Golgi protein per 30 min.  相似文献   

16.
UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose:ceramide galactosyltransferase. It is not known how UDP-galactose is transported from the cytosol into the endoplasmic reticulum. We transfected ceramide galactosyltransferase cDNA into CHOlec8 cells, which have a defective UGT and no endogenous ceramide galactosyltransferase. Cotransfection with the human UGT1 greatly stimulated synthesis of lactosylceramide in the Golgi and of galactosylceramide in the endoplasmic reticulum. UDP-galactose was directly imported into the endoplasmic reticulum because transfection with UGT significantly enhanced synthesis of galactosylceramide in endoplasmic reticulum membranes. Subcellular fractionation and double label immunofluorescence microscopy showed that a sizeable fraction of ectopically expressed UGT and ceramide galactosyltransferase resided in the endoplasmic reticulum of CHOlec8 cells. The same was observed when UGT was expressed in human intestinal cells that have an endogenous ceramide galactosyltransferase. In contrast, in CHOlec8 singly transfected with UGT 1, the transporter localized exclusively to the Golgi complex. UGT and ceramide galactosyltransferase were entirely detergent soluble and form a complex because they could be coimmunoprecipitated. We conclude that the ceramide galactosyltransferase ensures a supply of UDP-galactose in the endoplasmic reticulum lumen by retaining UGT in a molecular complex.  相似文献   

17.
The effect of uranyl on sugar transport across rat jejunum has been studied in vitro and in vivo. D-glucose and D-galactose accumulation in jejunum rings at pH 6.0 is inhibited about 40-65% by 1 mM uranyl nitrate. This inhibition is lower than that produced by 0.5 mM phlorizin. The effect was very similar when the incubation of the rings with the sugar was made in the absence of uranyl, after preincubation with the inhibitor. Washing with 10 mM EDTA reverted uranyl inhibition only slightly. D-fructose entry was weakly inhibited by uranyl. Glucose absorption in vivo along perfusion periods of 1 min was not affected by the presence of uranyl (0.001 to 1 mM) in the sugar solution, but the exposure of the mucosa to 0.1 mM uranyl at pH 6.5 for 10 min inhibited sugar absorption at the same pH in the subsequent periods of perfusion. Results suggest that uranyl impairs sugar transport by binding to protein chemical groups at the surface or in deeper sites of enterocyte membranes, a process that requires some minutes to be accomplished.  相似文献   

18.
Envelope membranes from chloroplasts contain UDP-sulfoquinovose: diacylglycerol sulfoquinovosyltransferase which catalyses the final step in sulfolipid assembly. In situ produced diacylglycerol served as radioactive acceptor to measure enzymatic activity. With this assay, several enzymatic parameters were investigated. The enzyme, which has maximal activity at pH 7.5, was stimulated by magnesium ions due to a decrease of the Km for uridine 5′-diphospho-sulfoquinovose from 80 pM (no magnesium) to 10 μM (5 mM magnesium). This stimulation had a Km of 0.7 mM magnesium and may be relevant in light/dark modulation of the enzymatic activity. The lower efficiency of guanosine 5′-diphospho-sulfoquinovose observed before can be ascribed to a higher Km of this sugar nucleotide (400 μM). Under optimized and linearized conditions the sulfoquinovosyltransferase displayed about 10% of the activity of the UDP-galactose: diacylglycerol galactosyltransferase which competes in the same membrane system for diacylglycerols. Addition of acidic lipids, such as sulfolipid and phosphatidylglycerol, to envelope membranes resulted in an inhibition of the sulfoquinovosyltransferase, whereas the galactosyltransferase was not affected. In vivo this may contribute to an adjustment of the sulfolipid proportion in plastid membranes. In contrast to the galactosyltransferase the sulfoquinovosyltransferase did not discriminate against the dipalmitoyl molecular species of diacylglycerol when offered together with the oleoyl-palmitoyl species. Under conditions when oleoyl-palmitoyl-and dipalmitoyl-diacylglycerols were synthesized with concurrent conversion to monogalactosyl and sulfoquinovosyl diacylglycerol, the sulfolipid was highly enriched in the fully saturated species. This may explain the occurrence of dipalmitoyl species in sulfolipids, as found in many plants.  相似文献   

19.
Golgi apparatus isolated from cat liver contained UDPglucose pyrophosphorylase (UTP:alpha-D-glucose-1-phosphate uridylyltransferase, EC 2.7.7.9) activity. The results of washing suggested that pyrophosphorylase was bound firmly to Golgi membranes. Moreover, the enzyme was activated by Triton X-100 in the same extent as galactosyltransferase, a typical Golgi apparatus enzyme. Two-substrate kinetic studies were performed with the enzymes from cytosol and Golgi fractions. The soluble enzyme showed an apparent 2.5-fold greater activity for the glucose 1-phosphate than for UTP, while pyrophosphorylase of Golgi apparatus had the same affinity for the two substrates. A random mechanism was observed with a direct dependence of apparent Michaelis constant values on the concentration of second substrate for soluble enzyme. In contrast, with Golgi enzyme one ligand had no effect on the binding of the other.  相似文献   

20.
A mixture of UDP-N-acetylglucosamine labeled with different radioisotopes in the uridine and glucosamine was used to show that the intact sugar nucleotide was translocated across the membrane of vesicles derived from rat liver rough endoplasmic reticulum (RER) and Golgi apparatus. Translocation was dependent on temperature, saturable at high concentrations of sugar nucleotide, and inhibited by treatment of vesicles with proteases, suggesting protein carrier mediated transport. Translocation of UDP-GlcNAc by RER-derived vesicles appeared to be specific since these vesicles were unable to translocate UDP-galactose, in contrast to those derived from the Golgi apparatus. Preliminary results suggest that the mechanism of UDP-GlcNAc translocation into RER-derived vesicles is via a coupled exchange with lumenal nucleoside monophosphate. This is similar to the recently postulated mechanism for translocation of sugar nucleotides into vesicles derived from the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号