首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sham YY  Ma B  Tsai CJ  Nussinov R 《Proteins》2002,46(3):308-320
Temperature induced unfolding of Escherichia coli dihydrofolate reductase was carried out by using molecular dynamic simulations. The simulations show that the unfolding generally involves an initial end-to-end collapse of the adenine binding domain into partially extended loops, followed by a gradual breakdown of the remaining beta sheet core structure. The core, which consists of beta strands 5-7, was observed to be the most resistant to thermal unfolding. This region, which is made up of part of the N terminus domain and part of the large domain of the E. coli dihydrofolate reductase, may constitute the nucleation site for protein folding and may be important for the eventual formation of both domains. The unfolding of different domains at different stages of the unfolding process suggests that protein domains vary in stability and that the rate at which they unfold can affect the overall outcome of the unfolding pathway. This observation is compared with the recently proposed hierarchical folding model. Finally, the results of the simulation were found to be consistent with a previous experimental study (Frieden, Proc Natl Acad Sci USA 1990;87:4413-4416) which showed that the folding process of E. coli dihydrofolate reductase involves sequential formation of the substrate binding sites.  相似文献   

2.
The leucine zipper is a dimeric coiled-coil structural motif consisting of four to six heptad repeats, designated (abcdefg)(n). In the GCN4 leucine zipper, a position 16 in the third heptad is occupied by an Asn residue whereas the other a positions are Val residues. Recently, we have constructed variants of the GCN4 leucine zipper in which the a position Val residues were replaced by Ile. The folding and unfolding of the wild-type GCN4 leucine zipper and the Val to Ile variant both adhere to a simple two-state mechanism. In this study, another variant of the GCN4 leucine zipper was constructed by moving the single Asn residue from a position 16 to a position 9. This switch causes the thermal unfolding of the GCN4 leucine zipper to become three state. The unfolding pathway of this variant was determined by thermal denaturation, limited proteinase K digestion, and sedimentation equilibrium analysis. Our data are consistent with a model in which the variant first unfolds from its N terminus and changes the oligomerization specificity from a native dimer to a partially unfolded intermediate containing a mixture of dimers and trimers and then completely unfolds to unstructured monomers.  相似文献   

3.
Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native‐state partial unfolding in a cysteine‐free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H* through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H* form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H* showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H* is greatly more susceptible to proteolysis by thermolysin than wild‐type RNase H* is. The free energy for partial unfolding determined by native‐state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge.  相似文献   

4.
Urea-induced unfolding of Escherichia coli citrate synthase occurs in two phases, as monitored by circular dichroism at 222 nm (measuring secondary structure) or by tryptophan fluorescence. In this paper we characterize the intermediate state, which retains about 40% of the ellipticity of the native state, and is stable between 2.5 M and 5.5 M urea, approximately. This intermediate binds significant amounts of the probe for hydrophobic surfaces, anilinonaphthalene sulfonate, but forms aggregates at least as high as an octamer, as shown by transverse urea gradient polyacrylamide electrophoresis. Thermal denaturation of E. coli citrate synthase also produces an intermediate at temperatures near 60 degrees C, which also retains about 40% of the native ellipticity and forms aggregates, as measured by electrospray-ionization/time-of-flight mass spectrometry. We have used a collection of "cavity-forming" mutant proteins, in which bulky buried hydrophobic residues are replaced by alanines, to explore the nature of the intermediate state further. A certain amount of these mutant proteins shows a destabilized intermediate, as measured by the urea concentration range in which the intermediate is observed. These mutants are found in parts of the citrate synthase sequence that, in a native state, form helices G, M, N, Q, R, and S. From this and other evidence, it is argued that the intermediate state is an aggregated state in which these six helices, or parts of them, remain folded, and that formation of this intermediate is also likely to be a key step in the folding of E. coli citrate synthase.  相似文献   

5.
Irbäck A  Mitternacht S 《Proteins》2006,65(3):759-766
The authors studied the temperature-induced unfolding of ubiquitin by all-atom Monte Carlo simulations. The unfolding behavior is compared with that seen in previous simulations of the mechanical unfolding of this protein, based on the same model. In mechanical unfolding, secondary-structure elements were found to break in a quite well-defined order. In thermal unfolding, the authors saw somewhat larger event-to-event fluctuations, but the unfolding pathway was still far from random. Two long-lived secondary-structure elements could be identified in the simulations. These two elements have been found experimentally to be the thermally most stable ones. Interestingly, one of these long-lived elements, the first beta-hairpin, was found to break early in the mechanical unfolding simulations. Their combined simulation results thus enable the authors to predict in detail important differences between the thermal and mechanical unfolding behaviors of ubiquitin.  相似文献   

6.
Total chemical synthesis of human matrix Gla protein   总被引:2,自引:0,他引:2       下载免费PDF全文
Human matrix Gla protein (MGP) is a vitamin K-dependent extracellular matrix protein that binds Ca2+ ions and that is involved in the prevention of vascular calcification. MGP is a 10.6-kD protein (84 amino acids) containing five gamma-carboxyglutamic acid (Gla) residues and one disulfide bond. Studies of the mechanism by which MGP prevents calcification of the arterial media are hampered by the low solubility of the protein (<10 microg/mL). Because of solubility problems, processing of a recombinantly expressed MGP-fusion protein chimera to obtain MGP was unsuccessful. Here we describe the total chemical synthesis of MGP by tBoc solid-phase peptide synthesis (SPPS) and native chemical ligation. Peptide Tyr1-Ala53 was synthesized on a derivatized resin yielding a C-terminal thioester group. Peptide Cys54-Lys84 was synthesized on Lys-PAM resin yielding a C-terminal carboxylic acid. Subsequent native chemical ligation of the two peptides resulted in the formation of a native peptide bond between Ala53 and Cys54. Folding of the 1-84-polypeptide chain in 3 M guanidine (pH 8) resulted in a decrease of molecular mass from 10,605 to 10,603 (ESI-MS), representing the loss of two protons because of the formation of the Cys54-Cys60 internal disulfide bond. Like native MGP, synthetic MGP had the same low solubility when brought into aqueous buffer solutions with physiological salt concentrations, confirming its native like structure. However, the solubility of MGP markedly increased in borate buffer at pH 7.4 in the absence of sodium chloride. Ca2+-binding to MGP was confirmed by analytical HPLC, on which the retention time of MGP was reduced in the presence of CaCl2. Circular dichroism studies revealed a sharp increase in alpha-helicity at 0.2 mM CaCl2 that may explain the Ca2+-dependent shift in high-pressure liquid chromatography (HPLC)-retention time of MGP. In conclusion, facile and efficient chemical synthesis in combination with native chemical ligation yielded MGP preparations that can aid in unraveling the mechanism by which MGP prevents vascular calcification.  相似文献   

7.
Although the denaturant-induced unfolding transition of cytochrome c was initially thought to be a cooperative process, recent spectroscopic studies have shown deviations from two-state behavior consistent with accumulation of an equilibrium intermediate. However, little is known about the structural and thermodynamic properties of this state, and whether it is stabilized by the presence of non-native heme ligands. We monitored the reversible denaturant-induced unfolding equilibrium of oxidized horse cytochrome c using various spectroscopic probes, including fluorescence, near and far-UV CD, heme absorbance bands in the Soret, visible and near-IR regions of the spectrum, as well as 2D NMR. Global fitting techniques were used for a quantitative interpretation of the results in terms of a three-state model, which enabled us to determine the intrinsic spectroscopic properties of the intermediate. A well-populated intermediate was observed in equilibrium experiments at pH 5 using either guanidine-HCl or urea as a denaturant, both for wild-type cytochrome c as well as an H33N mutant chosen to prevent formation of non-native His-heme ligation. For a more detailed structural characterization of the intermediate, we used 2D 1H-15N correlation spectroscopy to follow the changes in peak intensity for individual backbone amide groups. The equilibrium state observed in our optical and NMR studies contains many native-like structural features, including a well-structured alpha-helical sub-domain, a short Trp59-heme distance and solvent-shielded heme environment, but lacks the native Met80 sulfur-iron linkage and shows major perturbations in side-chain packing and other tertiary interactions. These structural properties are reminiscent of the A-state of cytochrome c, a compact denatured form found under acidic high-salt conditions, as well as a kinetic intermediate populated at a late stage of folding. The denaturant-induced intermediate also resembles alkaline forms of cytochrome c with altered heme ligation, suggesting that disruption of the native methionine ligand favors accumulation of structurally analogous states both in the presence and absence of non-native ligands.  相似文献   

8.
The (beta/alpha)(8) barrel is the most commonly occurring fold among enzymes. A key step towards rationally engineering (beta/alpha)(8) barrel proteins is to understand their underlying structural organization and folding energetics. Using misincorporation proton-alkyl exchange (MPAX), a new tool for solution structural studies of large proteins, we have performed a native-state exchange analysis of the prototypical (beta/alpha)(8) barrel triosephosphate isomerase. Three cooperatively unfolding subdomains within the structure are identified, as well as two partially unfolded forms of the protein. The C-terminal domain coincides with domains reported to exist in four other (beta/alpha)(8) barrels, but the two N-terminal domains have not been observed previously. These partially unfolded forms may represent sequential intermediates on the folding pathway of triosephosphate isomerase. The methods reported here should be applicable to a variety of other biological problems involving protein conformational changes.  相似文献   

9.
Chen G  Wen JD  Tinoco I 《RNA (New York, N.Y.)》2007,13(12):2175-2188
RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen at approximately 10 and approximately 5 piconewtons (pN), with ensemble rate constants of approximately 0.1 sec(-1), by stepwise force-drop experiments. Folding studies of the isolated 5'-hairpin construct suggested that the 5'-hairpin within the pseudoknot forms first, followed by formation of the 3'-stem. Stepwise formation of the pseudoknot structure at low forces are in contrast with the one-step unfolding at high forces of approximately 46 pN, at an average rate of approximately 0.05 sec(-1). In the constant-force folding trajectories at approximately 10 pN and approximately 5 pN, transient formation of nonnative structures were observed, which is direct experimental evidence that folding of both the hairpin and pseudoknot takes complex pathways. Possible nonnative structures and folding pathways are discussed.  相似文献   

10.
简要介绍了毛细管电泳的常用分离模式及其原理,并对毛细管电泳在蛋白质化学领域中的新应用——研究蛋白质折叠和发展前景作了评述。  相似文献   

11.
Although numerous studies have been directed at understanding early folding events through the characterization of folding intermediates, there are few reports on the very late folding events, i.e. on the events taking place on the native side of the folding barrier and on alternative conformations of the folded state. To shed further light on these issues, we have characterized by protein engineering the structure of an expanded but native-like intermediate that accumulates transiently in the unfolding reaction of the small protein S6 in the presence of SDS. The results show that the SDS micelles attack the native protein in the dead-time of the denaturation experiment, causing an expansion of the hydrophobic core prior to the major unfolding transition. We distinguish two forms of the unfolding intermediate that are correlated with the micellar structure. With spherical micelles, the expansion is seen mainly as a weakening of the interactions which anchor the two alpha-helices to the core of the S6 structure. With cylindrical micelles, prevalent at higher SDS concentrations, the expansion is more global and produces a species which closely resembles the transition-state structure for unfolding in GdmCl. Despite the highly weakened core, the micelle-associated intermediate displays cooperative unfolding, indicating a significant structural plasticity of the species on the native side of the folding barrier in the presence of SDS.  相似文献   

12.
Jung J  Lee J  Moon HT 《Proteins》2005,58(2):389-395
For proteins that fold by two-state kinetics, the folding and unfolding processes are believed to be closely related to their native structures. In particular, folding and unfolding rates are influenced by the native structures of proteins. Thus, we focus on finding important topological quantities from a protein structure that determine its unfolding rate. After constructing graphs from protein native structures, we investigate the relationships between unfolding rates and various topological quantities of the graphs. First, we find that the correlation between the unfolding rate and the contact order is not as prominent as in the case of the folding rate and the contact order. Next, we investigate the correlation between the unfolding rate and the clustering coefficient of the graph of a protein native structure, and observe no correlation between them. Finally, we find that a newly introduced quantity, the impact of edge removal per residue, has a good overall correlation with protein unfolding rates. The impact of edge removal is defined as the ratio of the change of the average path length to the edge removal probability. From these facts, we conclude that the protein unfolding process is closely related to the protein native structure.  相似文献   

13.
Okumura H 《Proteins》2012,80(10):2397-2416
A multibaric‐multithermal molecular dynamics (MD) simulation of a 10‐residue protein, chignolin, was performed. All‐atom model with the Amber parm99SB force field was used for the protein and the TIP3P model was used for the explicit water molecules. This MD simulation covered wide ranges of temperature between 260 and 560 K and pressure between 0.1 and 600 MPa and sampled many conformations without getting trapped in local‐minimum free‐energy states. Folding events to the native β‐hairpin structure occurred five times and unfolding events were observed four times. As the temperature and/or pressure increases, fraction of folded chignolin decreases. The partial molar enthalpy change ΔH and partial molar volume change ΔV of unfolding were calculated as ΔH = 24.1 ± 4.9 kJ/mol and ΔV = ?5.6 ± 1.5 cm3/mol, respectively. These values agree well with recent experimental results. Illustrating typical local‐minimum free‐energy conformations, folding and unfolding pathways were revealed. When chignolin unfolds from the β‐hairpin structure, only the C terminus or both C and N termini open first. It may undergo an α‐helix or 310‐helix structure and finally unfolds to the extended structure. Difference of the mechanism between temperature denaturation and pressure denaturation is also discussed. Temperature denaturation is caused by making the protein transferred to a higher entropy state and making it move around more with larger space. The reason for pressure denaturation is that water molecules approach the hydrophobic residues, which are not well hydrated at the folded state, and some hydrophobic contacts are broken. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Insulin-like growth factor (IGF-1) contains three disulfide bonds. In the presence of denaturant and thiol catalyst, IGF-1 shuffles its native disulfide bonds and denatures to form a mixture of scrambled isomers. The composition of scrambled IGF varies under different denaturing conditions. Among the 14 possible scrambled IGF isomers, the yield of the beads-form isomer is shown to be directly proportional to the strength of the denaturing condition. This paper demonstrates a new approach to quantify the extent of unfolding of the denatured protein.  相似文献   

15.
A number of residues in globins family are well conserved but are not directly involved in the primary oxygen-carrying function of these proteins. A possible role for these conserved, non-functional residues has been suggested in promoting a rapid and correct folding process to the native tertiary structure. To test this hypothesis, we have studied pH-induced equilibrium unfolding of mutant apomyoglobins with substitutions of the conserved residues Trp14 and Met131, which are not involved in the function of myoglobin, by various amino acids. This allowed estimating their impact on the stability of various conformational states of the proteins and selecting conditions for a folding kinetics study. The results obtained from circular dichroism, tryptophan fluorescence, and differential scanning microcalorimetry for these mutant proteins were compared with those for the wild type protein and for a mutant with the non-conserved Val17 substituted by Ala. In the native folded state, all of the mutant apoproteins have a compact globular structure, but are destabilized in comparison to the wild type protein. The pH-induced denaturation of the mutant proteins occurs through the formation of a molten globule-like intermediate similar to that of the wild type protein. Thermodynamic parameters for all of the proteins were calculated using the three state model. Stability of equilibrium intermediates at pH ~4.0 was shown to be slightly affected by the mutations. Thus, all of the above substitutions influence the stability of the native state of these proteins. The cooperativity of conformational transitions and the exposed to solvent protein surface were also changed, but not for the substitution at Val17.  相似文献   

16.
The absence of detectable kinetic and equilibrium folding intermediates by optical probes is commonly taken to indicate that protein folding is a two-state process. However, for some small proteins with apparent two-state behavior, unfolding intermediates have been identified in native-state hydrogen exchange or kinetic unfolding experiments monitored by nuclear magnetic resonance. Rd-apocytochrome b(562), a four-helix bundle, is one such protein. Here, we found another unfolding intermediate for Rd-apocytochrome b(562). It is based on a cooperative transition of (15)N chemical shifts of amide protons as a function of urea concentrations before the global unfolding. We have solved the high-resolution structure of the protein at 2.8 M urea, which is after this cooperative transition but before the global unfolding. All four helices remained intact, but a number of hydrophobic core residues repacked. This intermediate provides a possible structural interpretation for the kinetic unfolding intermediates observed using nuclear magnetic resonance methods for several proteins and has important implications for theoretical studies of protein folding.  相似文献   

17.
Chemical synthesis is a well‐established method for the preparation in the research laboratory of multiple‐tens‐of‐milligram amounts of correctly folded, high purity protein molecules. Chemically synthesized proteins enable a broad spectrum of novel protein science. Racemic mixtures consisting of d ‐protein and l ‐protein enantiomers facilitate crystallization and determination of protein structures by X‐ray diffraction. d ‐Proteins enable the systematic development of unnatural mirror image protein molecules that bind with high affinity to natural protein targets. The d ‐protein form of a therapeutic target can also be used to screen natural product libraries to identify novel small molecule leads for drug development. Proteins with novel polypeptide chain topologies including branched, circular, linear‐loop, and interpenetrating polypeptide chains can be constructed by chemical synthesis. Medicinal chemistry can be applied to optimize the properties of therapeutic protein molecules. Chemical synthesis has been used to redesign glycoproteins and for the a priori design and construction of covalently constrained novel protein scaffolds not found in nature. Versatile and precise labeling of protein molecules by chemical synthesis facilitates effective application of advanced physical methods including multidimensional nuclear magnetic resonance and time‐resolved FTIR for the elucidation of protein structure–activity relationships. The chemistries used for total synthesis of proteins have been adapted to making artificial molecular devices and protein‐inspired nanomolecular constructs. Research to develop mirror image life in the laboratory is in its very earliest stages, based on the total chemical synthesis of d ‐protein forms of polymerase enzymes.  相似文献   

18.
Fluorescence and circular dichroism data as a function of temperature were obtained to characterize the unfolding of nuclease A and two of its less stable mutants. These spectroscopic data were obtained with a modified instrument that enables the nearly simultaneous detection of both fluorescence and CD data on the same sample. A global analysis of these multiple datasets yielded an excellent fit of a model that includes a change in the heat capacity change, ΔCp, between the unfolded and native states. This analysis gives a ΔCp of 2.2 kcal/mol/·K for thermal unfolding of the WT protein and 1.3 and 1.8 kcal/mol/K for the two mutants. These ΔCp values are consistent with significant population of the cold unfolded state at ∼0°C. Independent evidence for the existence of a cold unfolded state is the observation of a separately migrating peak in size exclusion chromatography. The new chromatographic peak is seen near 0°C, has a partition coefficient corresponding to a larger hydrodynamic radius, and shows a red-shifted fluorescence spectrum, as compared to the native protein. Data also indicate that the high-temperature unfolded form of mutant nuclease is relatively compact. Size exclusion chromatography shows the high temperature unfolded form to have a hydrodynamic radius that is larger than that for the native form, but smaller than that for the urea or pH-induced unfolded forms. Addition of chemical denaturants to the high-temperature unfolded form causes a further unfolding of the protein, as indicated by an increase in the apparent hydrodynamic radius and a decrease in the rotational correlation time for Trp140 (as determined by fluorescence anisotropy decay measurements). Proteins 28:227–240, 1997 © 1997 Wiley-Liss Inc.  相似文献   

19.
Protein intermediates in equilibrium with native states may play important roles in protein dynamics but, in cases, can initiate harmful aggregation events. Investigating equilibrium protein intermediates is thus important for understanding protein behaviour (useful or pernicious) but it is hampered by difficulties in gathering structural information. We show here that the phi-analysis techniques developed to investigate transition states of protein folding can be extended to determine low-resolution three-dimensional structures of protein equilibrium intermediates. The analysis proposed is based solely on equilibrium data and is illustrated by determination of the structure of the apoflavodoxin thermal unfolding intermediate. In this conformation, a large part of the protein remains close to natively folded, but a 40 residue region is clearly unfolded. This structure is fully consistent with the NMR data gathered on an apoflavodoxin mutant designed specifically to stabilise the intermediate. The structure shows that the folded region of the intermediate is much larger than the proton slow-exchange core at 25 degrees C. It also reveals that the unfolded region is made of elements whose packing surface is more polar than average. In addition, it constitutes a useful guide to rationally stabilise the native state relative to the intermediate state, a far from trivial task.  相似文献   

20.
Point mutations in proteins can have different effects on protein stability depending on the mechanism of unfolding. In the most interesting case of I27, the Ig‐like module of the muscle protein titin, one point mutation (Y9P) yields opposite effects on protein stability during denaturant‐induced “global unfolding” versus “vectorial unfolding” by mechanical pulling force or cellular unfolding systems. Here, we assessed the reason for the different effects of the Y9P mutation of I27 on the overall molecular stability and N‐terminal unraveling by NMR. We found that the Y9P mutation causes a conformational change that is transmitted through β‐sheet structures to reach the central hydrophobic core in the interior and alters its accessibility to bulk solvent, which leads to destabilization of the hydrophobic core. On the other hand, the Y9P mutation causes a bend in the backbone structure, which leads to the formation of a more stable N‐terminal structure probably through enhanced hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号