首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the anthracycline antitumor antibotics daunomycin and novatrone with the vitamin nicotinamide has been studied by one-and two-dimensional 1H NMR (500 MHz). Due to significant differences between the structures of the chromophores of interacting molecules, a two-site heteroassociation model has been developed, which implies the binding of one or several nicotinamide molecules to the chromophore of the antibiotic. The structural and thermodynamic parameters of the heteroassociation of nicotinamide with daunomycin and novatrone have been determined from the experimental concentration and temperature dependences of the 1H NMR chemical shifts of the interacting molecules. The most favorable structures of the 1:1 nicotinamide-daunomycin and nicotinamide-novatrone heterocomplexes have been found using the molecular mechanics method (X-PLOR software) and analysis of induced proton chemical shifts. The results demonstrate that two nicotinamide molecules cannot simultaneously bind on one side of the chromophore of the daunomycin or novatrone. The 1:1 heterocomplexes of the vitamin with the antibiotics are mainly stabilized by the stacking of aromatic chromophores.  相似文献   

2.
A heteroassociation of antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and vitamin. The equilibrium reaction constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH and deltaS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

3.
A heteroassociation of the antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and the vitamin. The equilibrium reaction constants, the induced proton chemical shifts, and the thermodynamic parameters (ΔH and ΔS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.  相似文献   

4.
Heteroassociation of antibacterial antibiotic norfloxacin with aromatic vitamins nicotinamide and flavin mononucleotide in aqueous solution was studied by 1H NMR spectroscopy (500 MHz). Equilibrium constants, induced proton chemical shifts, and thermodynamic parameters (ΔH, ΔS) for the reactions of heteroassociation of the molecules were determined on the basis of the concentration and temperature dependences of proton chemical shifts for interacting aromatic molecules. The analysis of the results obtained indicates the formation of heterocomplexes between vitamin molecules and norfloxacin owing to stacking interactions between aromatic chromophores and additional intermolecular hydrogen bonding in norfloxacin-nicotinamide. The most probable spatial structures of 1:1 norfloxacin-flavin mononucleotide and norfloxacin-nicotinamide heterocomplexes were determined by molecular modeling methods using X-PLOR software on the basis of analysis of induced proton chemical shifts.  相似文献   

5.
The heteroassociation of the antibacterial antibiotic norfloxacin with aromatic vitamins nicotineamide and flavin mononucleotide in aqueous solution has been studied by 1H NMR spectroscopy (503 MHz). Equilibrium constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH, deltaS) of the heteroassociation of molecules were determined from the concentration and temperature dependences of chemical shifts of protons of interacting aromatic molecules. An analysis of the results indicates the formation of heterocomplexes between the molecules of the vitamins and norfloxacin, which is caused by stacking interactions between aromatic chromophores and an additional intermolecular hydrogen bond in the norfloxacin-nicotinamide system. Based on the analysis of induced chemical shifts of protons of molecules, the most probable spatial structures 1:1 of norfloxacin-flavin mononucleitide and norfloxacin-nicotinamide heterocomolexes were determined by the methods of molecular modeling using the X-PLOR program.  相似文献   

6.
The analysis of heteroassociation of antibiotic topotecan (TPT) with aromatic biologically active compounds (BAC): caffeine, mutagens ethidium bromide and proflavine, antibiotic daunomycin, vitamins flavin-mononucleotide and nicotinamide, has been carried out in the work using 1H NMR spectroscopy data. The equilibrium constants of heteroassociation and induced chemical shifts of the protons have been obtained in the complexes with BAC. It is found that the complex formation TPT-BAC has the nature of stacking of the chromophores, additionally stabilized in the case of proflavine by intermolecular hydrogen bond. Calculation of the basic components of the Gibbs free energy of the complexation reactions is carried out, and the factors which stabilize and destabilize the heterocomplexes of molecules are revealed.  相似文献   

7.
The molecular mechanism of the combined action of antibiotic and vitamin was studied by NMR spectroscopy. The heteroassociation of the antitumor antibiotic actinomycin D and flavin mononucleotide was investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy. The equilibrium association constant, the thermodynamic parameters (deltaH, deltaS) of heteroassociation of actinomycin D with flavin mononucleotide, and the limiting values of proton chemical shifts in the heterocomplex were determined from the concentration and temperature dependences of proton chemical shifts of molecules. The most favorable structure of the 1:1 actinomycin D-flavin mononucleotide heteroassociation complex was determined using both the molecular mechanics methods (X-PLOR software) and the limiting values of proton chemical shifts of the molecules. In the calculated structure, the planes of the chromophores of actinomycin D and flavin mononucleotide molecules in the 1:1 heterocomplex are parallel and separated from each other by a distance of about 0.34 nm. At the same time, there is a probability of formation of intermolecular hydrogen bonds in the calculated structure of 1:1 actinomycin D-flavin mononucleotide complex. The analysis of the results obtained suggests that aromatic molecules of vitamins, e.g., flavin mononucleotide, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solution, modulating thereby the efficacy of their medical and biological action.  相似文献   

8.
The heteroassociation of caffeine (CAF) and the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) (ACT) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The equilibrium reaction constants, thermodynamic parameters (delta H and delta S) of ACT heteroassociation with CAF, the limiting values of proton chemical shifts of their molecules in the heteroassociation complex, and the spatial structure of the ACT-CAF complex were determined from the experimental dependences of proton chemical shifts of the aromatic molecules on concentration and temperature. The parameters of CAF heteroassociation with the phenoxazone antibiotic actinomycin D and its synthetic analogue ACT were comparatively analyzed and conclusions were made on the crucial role of stacking interactions of the chromophores of CAF and the phenoxazone antibiotics in the formation of the heterocomplexes in aqueous solution.  相似文献   

9.
In order to investigate the effect on combinations of aromatic antibiotics used in chemotherapy, the hetero-association of the antitumour antibiotics actinomycin D (AMD) with daunomycin (DAU) or novatrone (NOV) has been studied by the methods of 1D- and 2D 500 MHz 1H-NMR spectroscopy and molecular mechanics calculations. The experimental concentration and temperature dependences of the proton chemical shifts of mixtures of the aromatic drugs have been analyzed in terms of a modified statistical-thermodynamical model of hetero-association to give the equilibrium reaction constants, the thermodynamical parameters (deltaH, deltaS) of hetero-association of AMD with DAU or NOV and the limiting values of proton chemical shifts of the molecules in the hetero-complexes. The most favorable averaged structures of the 1:1 DAU-AMD and NOV-AMD hetero-association complexes have been determined using both the limiting values of proton chemical shifts of the molecules and molecular mechanics methods (X-PLOR software). The results show that intermolecular complexes between DAU-AMD and NOV-AMD are mainly stabilized by stacking interactions of the aromatic chromophores, although the DAU-AMD hetero-complex has additional stabilization, which may be explained by an intermolecular hydrogen bond between a carbonyl group of ring C of DAU and the NH group of D-Val of the pentapeptide side chain ring of AMD. The relative content of each type of molecular complex in the mixed solution has been calculated at different values of the ratio (r) of the initial concentrations of DAU and AMD. It is found that the contributions of hetero-complexes to the general equilibrium in solution are predominant at quite different values of r, viz. at r>12 for AMD with NOV and at r>2 for AMD with DAU, compared to r>0.3 for the DAU-NOV system observed previously. It is concluded that anticancer drugs have quite different affinities for formation of hetero-complexes with other aromatic antibiotics in aqueous solution, which may need to be taken into consideration for their use in combination chemotherapy.  相似文献   

10.
The heteroassociation of caffeine (CAF) and the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) (ACT) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The equilibrium reaction constants, thermodynamic parameters (H and S) of ACT heteroassociation with CAF, the limiting values of proton chemical shifts of their molecules in the heteroassociation complex, and the spatial structure of the ACT–CAF complex were determined from the experimental dependences of proton chemical shifts of the aromatic molecules on concentration and temperature. The parameters of CAF heteroassociation with the phenoxazone antibiotic actinomycin D and its synthetic analogue ACT were comparatively analyzed and conclusions were made on the crucial role of stacking interactions of the chromophores of CAF and the phenoxazone antibiotics in the formation of the heterocomplexes in aqueous solution.  相似文献   

11.
The complex formation of the antibiotic daunomycin with deoxytetranucleotides of different base sequence in the chain, 5'-d(GpCpGpC), 5'-d(CpGpCpG), and 5'-d(TpGpCpA) in aqueous salt solution was studied by 1D and 2D (2M-TOCSY and 2M-NOESY) 1H-NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts of molecules were measured. Based on these dependences, reaction equilibrium constants, relative content of various complexes depending on concentration and temperature, limiting values of chemical shifts of protons of daunomycin incorporated in various complexes, and the thermodynamic parameters delta H and delta S of complex formation were calculated. The analysis of the results enables the conclusion that the sites of predominant intercalation of daunomycin are triplet nucleotide sequences, the binding sites of the antibiotic with three consecutive GC pairs in the tetranucleotide duplex being more preferential. Daunomycin exhibits no sequence specificity upon binding to the single-stranded deoxynucleotide sequence. From the calculated values of induced chemical shifts of daunomycin protons and 2M-NOE data, the most probable spatial structures of complexes (1:2) of the antibiotic with deoxytetranucleotides were constructed. The binding of the second daunomycin molecule to both the single-stranded and duplex form of tetramers is of pronounced anticooperative mode, which is explained by the presence in the antibiotic of a positively charged amino sugar residue, which poses considerable steric constraints for the insertion of the second antibiotic molecule into the short tetranucleotide sequence. The results were compared with the data obtained under identical experimental conditions for typical intercalators proflavine and ethidium bromide.  相似文献   

12.
500 MHz NMR spectroscopy has been used to investigate the complexation of the anthracycline antibiotic daunomycin (DAU) with self-complementary deoxytetranucleotides, 5'-d(CGCG), 5'-d(GCGC), 5'-d(TGCA), 5'-d(ACGT) and 5'-d(AGCT), of different base sequence in aqueous salt solution. 2D homonuclear 1H NMR spectroscopy (TOCSY and NOESY) and heteronuclear 1H - 31P NMR spectroscopy (HMBC) have been used for complete assignment of the non-exchangeable protons and the phosphorus resonance signals, respectively, and for a qualitative determination of the preferred binding sites of the drug. Analysis shows that DAU intercalates preferentially into the terminal sites of each of the tetranucleotides and that the aminosugar of the antibiotic is situated in the minor groove of the tetramer duplex, partly eclipsing the third base pair. A quantitative determination of the complexation of DAU with the deoxytetranucleotides has been made using the experimental concentration and temperature dependences of the drug proton chemical shifts; these have been analysed in terms of the equilibrium reaction constants, limiting proton chemical shifts and thermodynamical parameters (enthalpies deltaH, entropies deltaS) of different drug-DNA complexes (1:1, 1:2, 2:1, 2:2) in aqueous solution. It is found that DAU interacts with sites containing three adjacent base pairs but does not show any significant sequence specificity of binding with either single or double-stranded tetranucleotides, in contrast with other intercalating drugs such as proflavine, ethidium bromide and actinomycin D. The most favourable structures of the 1:2 complexes have been derived from the induced limiting proton chemical shifts of the drug in the intercalated complexes with the tetranucleotide duplex, in conjunction with 2D NOE data. It has been found that the conformational parameters of the double helix and the orientation of the DAU chromophore in the intercalated complexes depend on base sequence at the binding site of the tetramer duplexes in aqueous solution.  相似文献   

13.
The self-association of the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The two-dimensional homonuclear correlation NMR techniques (TOCSY and ROESY) were used to completely assign all the proton signals of the antibiotic and to quantitatively analyze the mutual arrangement of the antibiotic molecules in their aggregates. The concentration and temperature dependences of proton chemical shifts were used to determine the equilibrium constants and the thermodynamic parameters (delta H and delta S) of the self-association, as well as the limiting values of proton chemical shifts in associates. The experimental results were analyzed using both the indefinite noncooperative and cooperative models of the molecular self-association. The calculated value of the cooperativity coefficient (sigma approximately 1.1) for our synthetic antibiotic confirmed a substantially lower anticooperative effect at the aggregation of its molecules in comparison with that of the antitumor antibiotic actinomycin D (sigma approximately 1.5). We calculated the most favorable structure of the dimeric associate of the synthetic antibiotic in aqueous solution and found that, like in the actinomycin D dimer, the antiparallel orientation of the phenoxazone chromophore planes of interacting molecules is characteristic of its dimer. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 4; see also http://www.maik.ru.  相似文献   

14.
NMR spectroscopy has been used to elucidate the molecular basis of the action of caffeine (CAF) on the complexation with DNA of mutagens such as ethidium bromide, propidium iodide, proflavine and acridine orange, and anticancer drugs such as actinomycin D and daunomycin. The hetero-association of CAF and each of the aromatic ligands in 0.1 mol L(-1) phosphate buffer (pD=7.1) has been investigated as a function of concentration and temperature by 500 MHz 1H NMR spectroscopy and analysed in terms of a statistical-thermodynamic model, in which molecules form indefinite aggregates for both self-association and hetero-association. The analysis leads to determination of the equilibrium constants of hetero-association and to the values of the limiting chemical shifts of the heteroassociation of CAF with each of the aromatic molecules. The hetero-association constants between CAF and each of the aromatic drugs/dyes are found to be intermediate in magnitude between those for self-association of CAF and the corresponding drug/dye. The most probable structures of the 1:1 CAF + ligand hetero-association complexes have been determined from the calculated values of the induced limiting chemical shifts of the drug protons. Knowledge of the equilibrium constants for self-association of CAF and the aromatic ligands, for their hetero-association and their complexation with a DNA fragment, the deoxytetranucleotide 5'-d(TpGpCpA), enabled the relative content of each of the CAF-ligand and CAF-ligand-d(TGCA) complexes to be calculated as a function of CAF concentration in mixed solutions. It is concluded that, on addition of CAF to the solution, the decrease in binding of drug or mutagen with DNA is due both to competition for the binding sites by CAF and the aromatic molecules, and to formation of CAF-ligand hetero-association complexes in the mixed solution; the relative importance of each process depends on the drug or mutagen being considered.  相似文献   

15.
Complex formation of hairpin-producing heptadeoxynucleotide 5'-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H-1H (2M-TOCSY, 2M-NOESY), 1H-31P (2M-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2M-NOE data and the calculated values of limiting chemical shifts of ligand protons.  相似文献   

16.
Self-association of hexadeoxynucleotide 5'-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H-31P NMR spectroscopy in water-salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin-d(TACGTA)2 complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

17.
The chemical shifts of all the aromatic proton and anomeric proton resonances of NADP+, NADPH, and several structural analogues have been determined in their complexes with Lactobacillus casei dihydrofolate reductase by double-resonance (saturation transfer) experiments. The binding of NADP+ to the enzyme leads to large (0.9-1.6 ppm) downfield shifts of all the nicotinamide proton resonances and somewhat smaller upfield shifts of the adenine proton resonance. The latter signals show very similar chemical shifts in the binary and ternary complexes of NADP+ and the binary complexes of several other coenzymes, suggesting that the environment of the adenine ring is similar in all cases. In contrast, the nicotinamide proton resonances show much greater variability in position from one complex to another. The data show that the environments of the nicotinamide rings of NADP+, NADPH, and the thionicotinamide and acetylpyridine analogues of NADP+ in their binary complexes with the enzyme are quite markedly different from one another. Addition of folate or methotrexate to the binary complex has only modest effects on the nicotinamide ring of NADP+, but trimethoprim produces a substantial change in its environment. The dissociation rate constant of NADP+ from a number of complexes was also determined by saturation transfer.  相似文献   

18.
Structure of Daunomycin; X-ray Analysis of N-Br-Acetyl-Daunomycin Solvate   总被引:1,自引:0,他引:1  
THE antibiotic daunomycin was discovered and studied by Di Marco and co-workers1–5 who found it to have cytotoxic and antimitotic activity. Extensive chemical work by Arca-mone and co-workers6–9 has established the total absolute configuration as in Fig. 1, which gives the formula of the N-Br-acetyl derivative. Daunomycin interferes with nucleic acid metabolism in both mammalian10 and bacterial11 cells and the formation of a complex between daunomycin and nucleic acids has been studied12–16. The nature of the chemical binding between antibiotics which affect ribonucleic acid synthesis and DNA has been discussed16 and it has been suggested that the amino as well as either quinone17,18 or hydroxyl groups of the chromophore are responsible for hydrogen bonding to the DNA helix. An understanding of this effect is important as the binding of daunomycin to DNA is most likely responsible for the biological activity of this antibiotic. To determine the detailed stereochemical features of daunomycin, the relative orientation of the sugar ring to the aglycone moiety and the nature of the hydrogen bonding in the solid state, we began X-ray crystallographic studies.  相似文献   

19.
Self-association of hexadeoxynucleotide 5"-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H–31P NMR spectroscopy in water–salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin–d(TACGTA)2complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

20.
The complex formation of the antibiotic mitoxantrone (novantrone) with the deoxytetranucleotide 5'-d(TpGpCpA) in an aqueous salt solution was studied by one- and two-dimensional (2D-TOSCY and 2D-NOESY) 1H NMR spectroscopy (500 MHz). Concentration and temperature dependence of proton chemical shifts of molecules were measured. On the basis of these data, the equilibrium constants of the reaction, the relative content of various complexes as a function of concentration and temperature, the limiting values of chemical shifts of novantrone in complexes, and the thermodynamic parameters delta H and delta S of complex formation of molecules were calculated. It was concluded that the attachment sites for novantrone are pyrimidine-purine nucleotide sequences, sites d(TG) and d(CA) of the tetranucleotide duplex. The analysis of the thermodynamic parameters of the complex formation suggests that intermolecular hydrogen bonds and electrostatic interactions of the aminoalkyl chains of novantrone with the duplex d(TpGpCpA)2 play an important role in the stabilization of complexes 1:2 and 2:2. The results were compared with those obtained earlier for typical intercalators of ethidium bromide and daunomycin under identical experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号