首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, selective and sensitive high performance liquid chromatography-mass spectrometric (HPLC-MS) method has been developed for the determination of isosorbide 5-mononitrate (5-ISMN) in human plasma. With acetaminophen as internal standard, sample pretreatment involved one-step extraction with diethyl ether of 0.5 mL plasma. Analysis was performed on an ACQUITY UPLC BEH C(18) column (100 mm x 2.1mm, 1.7 microm) with mobile phase consisting of acetonitrile-water (20:80, v/v). The detection was carried out by means of electrospray ionization mass spectrometry in negative ion mode with selected ion recording (SIR). Standard curves were linear (r(2)> or =0.99) over the concentration range of 1.04-1040 ng/mL. The lower limit of quantification (LLOQ) was 1.04 ng/mL. The intra- and inter-day precisions (RSDs) were less than 8.6% and 13.4%, respectively, and the accuracy (RE) was within +/-0.45%. The method herein described was fully validated and successfully applied to the pharmacokinetic study of 5-ISMN in compound extended-release tablets in 18 healthy male volunteers after oral administration.  相似文献   

2.
A selective and sensitive high performance liquid chromatography-electrospray ionisation-mass spectrometry method has been developed for the determination of balofloxacin (BLFX) in human plasma. The sample preparation was a liquid-liquid extraction, and chromatographic separation was achieved with an Agilent ZORBAX 300SB C18 2.1 mm x 150 mm column using a mobile phase comprised of methanol-water (10 mM CH(3)COONH(4), pH 3.0)=40:60 (v/v). Standard curves were linear (r=0.9992) over the concentration range of 0.03-3 microg/ml and had good accuracy and precision. The within- and between-batch precisions were within 10% relative standard deviation (R.S.D.). The limit of detection (LOD) was 0.02 microg/ml. The validated HPLC-electrospray ionization (ESI)-MS method has been used successfully to study balofloxacin pharmacokinetics in healthy volunteers.  相似文献   

3.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

4.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed at our center for the determination of glimepiride in human plasma. After the addition of the internal standard, plasma samples were extracted by liquid-liquid extraction technique using diethyl ether. The compounds were separated on a prepacked C18 column using a mixture of acetonitrile, methanol and ammonium acetate buffer as mobile phase. A Finnigan LCQDUO ion trap mass spectrometer connected to an Alliance Waters HPLC was used to develop and validate the method. The analytical method was validated according to the FDA bioanalytical method validation guidance. The results were within the accepted criteria as stated in the aforementioned guidance. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 5.0-500.0 ng/ml with a coefficient of determination (r2) of 0.9998. Accuracy for glimepiride ranged from 100.58 to 104.48% at low, mid and high levels. The intra-day precision was better than 12.24%. The lower limit of quantitation (LLOQ) was identifiable and reproducible at 5.0 ng/ml with a precision of 7.96%. The proposed method enables the unambiguous identification and quantitation of glimepiride for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

5.
A high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI) method for simultaneous determination of venlafaxine (VEN) and its three metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in human plasma has been developed and validated. Estazolam was used as the internal standard. The compounds and internal standard were extracted from plasma by a liquid-liquid extraction. The HPLC separation of the analytes was performed on a Thermo BDS HYPERSIL C18 (250 mm x 4.6 mm, 5 microm, USA) column, using a gradient elution program with solvents constituted of water (ammonium acetate: 30 mmol/l, formic acid 2.6 mmol/l and trifluoroacetic acid 0.13 mmol/l) and acetonitrile (60:40, V/V) at a flow-rate of 1.0 ml/min. All of the analytes were eluted within 6 min. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and were detected in the selected ion recording (SIR) mode. Calibration curves in spiked whole blood were linear from 4.0-700 ng/ml, 2.0-900 ng/ml, 3.0-800 ng/ml and 2.0-700 ng/ml for VEN, ODV, NDV and DDV, respectively, all of them with coefficients of determination above 0.9991. The average extraction recoveries for all the four analytes were above 77%. The methodology recoveries were higher than 91%. The limits of detection were 0.4, 0.2, 0.3, and 0.2 ng/ml for VEN, ODV, NDV and DDV, respectively. The intra- and inter-day variation coefficients were less than 11%. The method is accurate, sensitive and reliable for the pharmacokinetic study of venlafaxine as well as therapeutic drug monitoring (TDM).  相似文献   

6.
A selective, rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the quantitative determination of azithromycin in human plasma and its application in a pharmacokinetic study. With roxithromycin as internal standard, sample pretreatment involved a one-step extraction with diethyl ether of 0.5 mL plasma. The analysis was carried out on an ACQUITY UPLC BEH C(18) column (50 mm x 2.1 mm, i.d., 1.7 microm) with gradient elution at flow rate of 0.35 mL/min. The mobile phase was 50 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI). Linear calibration curves were obtained in the concentration range of 1-1000 ng/mL, with a lower limit of quantification of 1 ng/mL. The intra- and inter-day precision (RSD) values were below 15% and accuracy (RE) was -1.3% to 5.7% at all QC levels. The method was applicable to clinical pharmacokinetic study of azithromycin in healthy volunteers following oral administration.  相似文献   

7.
A method for the sensitive and specific determination of eight green tea catechins, consisting of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin-3-gallate (CG), epicatechin-3-gallate (ECG), gallocatechin-3-gallate (GCG) and epigallocatechin-3-gallate (EGCG), in human plasma was established. For optimization of conditions for LC-ESIMS, the separation of the eight catechins was achieved chromatographically using Inertsil ODS-2 column combined with a gradient elution system of 0.1M aqueous acetic acid and 0.1M acetic acid in acetonitrile. Detection using a mass spectrometer was performed with selected ion monitoring at m/z=289 for E and EC, 305 for GC and EGC, 441 for CG and ECG, and 457 for GCG and EGCG under negative ESI. A preparative procedure, consisting of the addition of perchloric acid and acetonitrile to the plasma for deproteinizing and the subsequent addition of potassium carbonate solution to remove excess acid, was developed. In six different plasma with the eight catechins spiked at two different concentrations, the average recoveries were in the range between 72.7 and 84.1%, which resulted from the matrix effect and preparative loss, with coefficients of variance being 8.2-19.8% among individuals. The levels of the catechins in prepared plasma solutions that were kept at 5 degrees C within 24h were stable, which allows us to simply analyze many prepared plasma solutions using an autosampler overnight. When using this method to analyze the eight catechins in human plasma after oral ingestion of a commercial green tea beverage, we detected all the catechins absorbed into human blood for the first time. This also suggested that extremely small amounts of the eight catechins orally ingested may be absorbed based on each absorptive property for the catechins. The method should enable pharmacokinetic studies of green tea catechins in humans.  相似文献   

8.
A sensitive and specific high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS) was developed for the determination of bulleyaconitine A (BLA) in human plasma. BLA and internal standard (I.S.) ketoconazole were extracted from the plasma by a liquid-liquid extraction. The supernatant was evaporated to complete dryness and reconstituted with acetonitrile containing 0.1% acetic acid before injecting into an ODS MS column. The gradient mobile phase was composed of a mixture of acetonitrile (containing 0.1% acetic acid, v/v) and 0.1% acetic acid aqueous solution eluted at 0.3 ml/min. BLA and I.S. were determined by multiple reaction monitoring using precursor-->product ion combinations at m/z 644.6-->584.3 and 531.2-->81.6, respectively. Linearity was established for the concentration range of 0.12-6 ng/ml. The recoveries of BLA ranged from 96.93 to 113.9% and the R.S.D. was within 20%. The method is rapid and applicable to the pharmacokinetic studies of BLA in human.  相似文献   

9.
A rapid, sensitive and specific method to determination of ambroxol in human plasma using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-MS/ESI) was described. Ambroxol and the internal standard (I.S.), fentanyl, were extracted from plasma by N-hexane-diethyl ether (1:1, v/v) after alkalinized with ammonia water. A centrifuged upper layer was then evaporated and reconstituted with 100 microl mobile phase. Chromatographic separation was performed on a BDS HYPERSIL C18 column (250 mmx4.6 mm, 5.0 microm, Thermo electron corporation, USA) with the mobile phase consisting of 30 mM ammonium acetate (0.4% formic acid)-acetonitrile (64:36, v/v) at a flow-rate of 1.2 mL min(-1). The total run time was 5.8 min for each sample. Detection and quantitation was performed by the mass spectrometer using selected ion monitoring at m/z 261.9, 263.8 and 265.9 for ambroxol and m/z 337.3 for fentanyl. The calibration curve was linear within the concentration range of 1.0-100.0 ng mL(-1) (r=0.9996). The limit of quantification was 1.0 ng mL(-1). The extraction recovery was above 83.3%. The methodology recovery was higher than 93.8%. The intra- and inter-day precisions were less than 6.0%. The method is accurate, sensitive and simple for the study of the pharmacokinetics and metabolism of ambroxol.  相似文献   

10.
A rapid and sensitive method for determination and screening in human plasma of talinolol is described using propranolol as the internal standard. The analytes in plasma were extracted by liquid-liquid extraction using methyl t-butyl ether. After removed and dried the upper organic phase, the extracts were reconstituted with a fixed volume of buffer of ammonium acetate and acetonitrile (60:40, v/v). The extracts were analyzed by a HPLC coupled to electrospray ionization mass spectrometry (HPLC-MS/ESI). The HPLC separation of the analytes was performed on a Phenomenex C18 (250 mmx4.6 mm, 5 microm, USA) column, with a flow rate of 0.85 mL/min. The complete elution was obtained within 5.5 min. The calibration curve was linear in the 1.0-400.0 ng/mL range for talinolol, with a coefficient of determination of 0.9996. The average extraction recovery was above 83%. The methodology recovery was between 101% and 102%. The limit of detection (LOD) was 0.3 ng/mL for talinolol. The intraday and inter-day coefficients of variation were less than 6%. This HPLC-MS/ESI procedure was used to assess the pharmacokinetics of talinolol. A single oral 50 mg dose of talinolol tablet was administered to 12 healthy Chinese volunteers, the main pharmacokinetic data are as follows: Cmax was 147.8+/-63.8 ng/mL; tmax was 2.0+/-0.7 h; t1/2 was 12.0+/-2.6 h. The method is accurate, sensitive and simple for the pharmacokinetic study of talinolol.  相似文献   

11.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of zolmitriptan in human plasma. After the addition of the internal standard (IS) and 1.0 M sodium hydroxide solution, plasma samples were extracted with methylene chloride:ethyl acetate mixture (20:80, v/v). The organic layer was evaporated under a stream of nitrogen at 40 degrees C. The residue was reconstituted with 100 microl mobile phase. The compounds were separated on a prepacked Lichrospher CN (5 microm, 150 mm x 2.0 mm) column using a mixture of methanol:water (10 mM NH(4)AC, pH 4.0) = 78:22 as mobile phase. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.30-16.0 ng/ml with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (R.S.D.%) were lower than 15% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.30 ng/ml. The proposed method enables the unambiguous identification and quantification of zolmitriptan for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

12.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of lipoic acid (LA) in human plasma. LA and the internal standard, naproxen, were extracted from a 500 microl plasma sample by one-step deproteination using acetonitrile. Chromatographic separation was performed on a Zorbax SB-C(18) Column (100 mmx3.0mm i.d. with 3.5 microm particle size) with the mobile phase consisting of acetonitrile and 0.1% acetic acid (pH 4, adjusted with ammonia solution) (65:35, v/v), and the flow rate was set at 0.3 ml/min. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was linear over the concentration range of 5-10,000 ng/ml for LA. The intra- and inter-day precisions were less than 7% and accuracy ranged from -7.87 to 9.74% at the LA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of LA in 10 healthy subjects.  相似文献   

13.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) is described for quantitation of salbutamol in human urine using nadolol as the internal standard (I.S.). Urine samples were hydrolyzed with beta-glucuronidase followed by a solid-phase extraction procedure using Bond Elut-Certify cartridges. The HPLC column was an Agilent Zorbax SB-C(18) column. A mixture of 0.01 M ammonium formate buffer (pH 3.5)-acetonitrile (85:15, v/v) was used as the mobile phase. Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. Selected ion monitoring (SIM) mode was used to monitor m/z 166 for salbutamol and m/z 310 for I.S. Good linearity was obtained in the range of 10.0-2000.0 ng/ml. The limit of quantification was 10.0 ng/ml. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 7.3%. The accuracy as determined from QC samples was within +/-2.6%. The method was applied for determining excretion curves of salbutamol.  相似文献   

14.
A highly sensitive and specific quantification method of estrone and estradiol in human serum was described based upon the use of picolinoyl derivatization and liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) in a positive mode. Estrogens were treated with picolinoyl chloride hydrochloride or picolinic acid and 2-methyl-6-nitrobenzoic anhydride followed by a solid-phase extraction with ODS cartridge. Picolinoyl derivatization proceeded quantitatively even in a microscale, and the picolinoyl esters provided simple positive ESI-mass spectra showing [M+H](+) as base peaks for these estrogens. The picolinoyl derivatives of these estrogens showed 100-fold higher detection response compared to underivatized intact molecules by LC-ESI-MS (selected reaction monitoring). Using this derivatization, estrogens spiked in the charcoal treated human serum samples were analyzed with limit of quantification (LOQ), intra-day accuracy and precision of 1.0pg/ml, 96.0% and 9.9% for estrone, and 0.5pg/ml, 84.4% and 12.8% for estradiol, respectively. Estrone and estradiol added to the crude serum samples were recovered with comparable LOQ and accuracy obtained for the charcoal treated serum samples as well.  相似文献   

15.
A highly sensitive high-performance liquid chromatographic-tandem mass spectrometric method (HPLC-MS-MS) has been developed to quantitate clemastine in human plasma for the purpose of pharmacokinetic studies. Sample preparation was carried out by liquid-liquid extraction using deuterated clemastine as an internal standard. Chromatographic separation used a C18 reversed phase polymer column giving an extremely fast total run time of 2 min. The method was validated and used for the bioequivalence study of clemastine tablets in healthy male volunteers (n=28). The lower limit of detection proved to be 0.01 ng/ml for clemastine.  相似文献   

16.
Clozapine (CLZ), olanzapine (OLZ), risperidone (RIP) and quetiapine (QTP) have been widely used in the treatment of schizophrenia. However, no study (or little study) has been conducted to determine the four drugs simultaneously by the use of high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI). OBJECTIVE: To develop a sensitive method for simultaneous determination of CLZ, OLZ, RIP and QTP in human plasma by HPLC-MS/ESI. METHODS: The analytes were extracted twice by ether after samples had been alkalinized. The HPLC separation of the analytes was performed on a MACHEREY-NAGEL C(18) ( [Formula: see text] mm, 3 microm, Germany) column, using water (formic acid: 2.70 mmol/l, ammonium acetate: 10 mmol/l)-acetonitrile (53:47) as mobile phase, with a flow-rate of 0.16 ml/min. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and were detected in the selected ion recording (SIR) mode. RESULTS: The calibration curves were linear in the ranges of 20-1000 ng/ml for CLZ and QTP, 1-50 ng/ml for OLZ and RIP, respectively. The average extraction recoveries for all the four analysts were at least above 80%. The methodology recoveries were higher than 91% for the analysts. The intra- and inter-day R.S.D. were less than 15%. CONCLUSION: The method is accurate, sensitive and simple for routine therapeutic drug monitoring (TDM) and for the study of the pharmacokinetics of the four drugs.  相似文献   

17.
An analytical method for simultaneous determination of erythromycin propionate and its active metabolite, erythromycin base, in human plasma by high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESI-MS) was developed and validated. Roxithromycin was selected as the internal standard. The samples were directly injected after simple deproteinized procedure only. The separation was achieved on a Johnson Spherigel analytical column packed with 5 microm C18 silica, employing acetonitrile -0.1% formic acid aqueous solution (50:50) as mobile phase. The quantification of target compounds was obtained by using a selected ion monitoring (SIM) at m/z 790.7 for erythromycin propionate, m/z 734.7 for erythromycin base and m/z 837.8 for roxithromycin. The correlation coefficients of the calibration curves were better than 0.997 (n=6), in the ranges from 2 ng/ml to 1 microg/ml, and from 1 to 10 microg/ml for erythromycin propionate and base. The method can provide the necessary sensitivity, precision and accuracy to allow the simultaneous determination of both compounds in a patient's plasma following a single administration of erythromycin stinoprate capsule (500 mg erythromycin base equivalent).  相似文献   

18.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of Lisinopril in human plasma using Enalaprilat as internal standard. The analyte and internal standard were extracted from the plasma samples by solid-phase extraction using Waters HLB Oasis SPE cartridges and chromatographed on a C8 analytical column. The mobile phase consisted of acetonitrile/water (60:40, v/v) + 20 mM acetic acid + 4.3 mM of triethylamine. The method had a chromatographic total run-time of 6.5 min and was linear within the range 2.00-200 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM). The precision (CV%) and accuracy, calculated from limit of quantification (LOQ) samples (n = 8), were 8.9 and 98.9%, respectively. The method herein described was employed in a bioequivalence study of two tablet formulations of Lisinopril 20mg.  相似文献   

19.
Simultaneous quantification method of three major metabolites of cortisone and cortisol, tetrahydrocortisol, allotetrahydrocortisol and tetrahydrocortisone by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was investigated in a positive mode using a recently developed picolinyl derivatization. Conversion of each steroid into the corresponding picolinyl derivatives (1b, 2b or 3b) was performed by mixed anhydride method using picolinic acids and 2-methyl-6-nitrobenzoic anhydride. Derivatization proceeded smoothly to afford the corresponding 3, 21-dipicolinyl derivatives. Positive ion-ESI mass spectra of the picolinyl derivatives were dominated by an appearance of [M+H](+) as base peaks in all cases. The picolinyl derivatives provided 15 to 80-fold higher ESI response in the LC-ESI-MS/MS (selected reaction monitoring: SRM) when compared to those of underivatized molecules in a positive LC-ESI mode. The use of the picolinyl ester, solid-phase extraction, and deuterium labeled internal standards enabled the concentrations of these metabolites in human urine to be determined simultaneously by LC-ESI-MS/MS (SRM) with a small sample volume of less than 1microl urine.  相似文献   

20.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of lansoprazole in human plasma using omeprazole as the internal standard. The analyte and internal standard were extracted from the plasma samples by liquid-liquid extraction using diethyl-ether-dichloromethane (70:30; v/v) and chromatographed on a C(18) analytical column. The mobile phase consisted of acetonitrile-water (90:10; v/v)+10 mM formic acid. The method has a chromatographic total run time of 5 min and was linear within the range 2.5-2000 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by Multiple Reaction Monitoring (MRM). The intra- and inter-run precision, calculated from quality control (QC) samples, was less than 3.4%. The accuracy as determined from QC samples was less than 9%. The method herein described was employed in a bioequivalence study of two capsule formulations of lansoprazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号