首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial proline 4-hydroxylases, which hydroxylate free L-proline to trans-4-hydroxy-L-proline, were screened in order to establish an industrial system for biotransformation of L-proline to trans-4-hydroxy-L-proline. Enzyme activities were detected in eight strains, including strains of Dactylosporangium spp. and Amycolatopsis spp. The Dactylosporangium sp. strain RH1 enzyme was partially purified 3,300-fold and was estimated to be a monomer polypeptide with an apparent molecular mass of 31 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Degenerate primers based on the N-terminal amino acid sequence of the 31-kDa polypeptide were synthesized in order to amplify the corresponding 71-bp DNA fragment. A 5.5-kbp DNA fragment was isolated by using the 71-bp fragment labeled with digoxigenin as a probe for a genomic library of Dactylosporangium sp. strain RH1 constructed in Escherichia coli. One of the open reading frames found in the cloned DNA, which encoded a 272-amino-acid polypeptide (molecular mass, 29, 715 daltons), was thought to be a proline 4-hydroxylase gene. The gene was expressed in E. coli as a fused protein with the N-terminal 34 amino acids of the beta-galactosidase alpha-fragment. The E. coli recombinant exhibited proline 4-hydroxylase activity that was 13. 6-fold higher than the activity in the original strain, Dactylosporangium sp. strain RH1. No homology was detected with other 2-oxoglutarate-dependent dioxygenases when databases were searched; however, the histidine motif conserved in 2-oxoglutarate-dependent dioxygenases was found in the gene.  相似文献   

2.
trans-4-Hydroxy- l -proline (Hyp) is an abundant component of mammalian collagen and functions as a chiral synthon for the syntheses of anti-inflammatory drugs in the pharmaceutical industry. Proline 4-hydroxylase (P4H) can catalyze the conversion of l -proline to Hyp; however, it is still challenging for the fermentative production of Hyp from glucose using P4H due to the low yield and productivity. Here, we report the metabolic engineering of Corynebacterium glutamicum for the fermentative production of Hyp by reconstructing tricarboxylic acid (TCA) cycle together with heterologously expressing the p4h gene from Dactylosporangium sp. strain RH1. In silico model-based simulation showed that α-ketoglutarate was redirected from the TCA cycle toward Hyp synthetic pathway driven by P4H when the carbon flux from succinyl-CoA to succinate descended to zero. The interruption of the TCA cycle by the deletion of sucCD-encoding the succinyl-CoA synthetase (SUCOAS) led to a 60% increase in Hyp production and had no obvious impact on the growth rate. Fine-tuning of plasmid-borne ProB* and P4H abundances led to a significant increase in the yield of Hyp on glucose. The final engineered Hyp-7 strain produced up to 21.72 g/L Hyp with a yield of 0.27 mol/mol (Hyp/glucose) and a volumetric productivity of 0.36 g·L −1·hr −1 in the shake flask fermentation. To our knowledge, this is the highest yield and productivity achieved by microbial fermentation in a glucose-minimal medium for Hyp production. This strategy provides new insights into engineering C. glutamicum by flux coupling for the fermentative production of Hyp and related products.  相似文献   

3.
为了使脯氨酸-4-羟化酶基因在重组大肠杆菌中得到高表达,通过调整大肠杆菌密码子偏好性以及mRNA二级结构,使得脯氨酸-4-羟化酶基因得到优化。将优化后的脯氨酸-4-羟化酶基因插入含有色氨酸串联启动子的p UC19质粒,构建重组质粒p UC19-ptrp2-Hyp,并导入大肠杆菌BL21(DE3)中。在摇瓶水平,重组菌以L-脯氨酸为底物发酵8 h,可积累(0.492±0.034)g/L的反式-4-羟脯氨酸。在发酵罐水平,通过补料分批发酵来提高反式-4-羟脯氨酸的产量,当补糖速率为18 g/h时,反式-4-羟脯氨酸的产量高达42.5 g/L,反式-4-羟脯氨酸产率为0.966 g/(L·h)。  相似文献   

4.
H Mori  T Shibasaki  K Yano    A Ozaki 《Journal of bacteriology》1997,179(18):5677-5683
Proline 3-hydroxylase was purified from Streptomyces sp. strain TH1, and its structural gene was cloned. The purified enzyme hydroxylated free L-proline to cis-3-hydroxy-L-proline and showed properties of a 2-oxoglutarate-dependent dioxygenase (H. Mori, T. Shibasaki, Y. Uosaki, K. Ochiai, and A. Ozaki, Appl. Environ. Microbiol, 62:1903-1907, 1996). The molecular mass of the purified enzyme was 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was 4.3. The optimal pH and temperature were 7.0 and 35 degrees C, respectively. The K(m) values were 0.56 and 0.11 mM for L-proline and 2-oxoglutarate, respectively. The Kcat value of hydroxylation was 3.2 s-1. Determined N-terminal and internal amino acid sequences of the purified protein were not found in the SwissProt protein database. A DNA fragment of 74 bp was amplified by PCR with degenerate primers based on the determined N-terminal amino acid sequence. With this fragment as a template, a digoxigenin-labeled N-terminal probe was synthesized by PCR. A 6.5-kbp chromosome fragment was cloned by colony hybridization with the labeled probe. The determined DNA sequence of the cloned fragment revealed a 870-bp open reading frame (ORF 3), encoding a protein of 290 amino acids with a calculated molecular weight of 33,158. No sequence homolog was found in EMBL, GenBank, and DDBJ databases. ORF 3 was expressed in Escherichia coli DH1. Recombinants showed hydroxylating activity five times higher than that of the original bacterium, Streptomyces sp. strain TH1. It was concluded that the ORF 3 encodes functional proline 3-hydroxylase.  相似文献   

5.
Hydroxylation of proline residue occurs in specific peptides and proteins derived from plants and animals, but the functional role of this modification has been characterized primarily in collagen. Marine cone snails produce disulfide-rich peptides that have undergone a plethora of posttranslational modifications, including proline hydroxylation. Although Conus snails extensively utilize proline hydroxylation, the consequences of this modification remain largely unexplored. In this work, we investigated the function of 4-hydroxyproline (Hyp) in conotoxins from three distinct gene families: mu-, omega-, and alpha-conotoxins. Analogues of mu-GIIIA, omega-MVIIC, alpha-GI, and alpha-ImI were synthesized with either Pro or Hyp, and their in vitro oxidative folding and biological activity were characterized. For GIIIA, which naturally contains three Hyp residues, the modifications improved the ability to block NaV1.4 sodium channels but did not affect folding. In contrast, the presence of Hyp in MVIIC had a significant impact on the oxidative folding but not on the biological activity. The folding yields for the MVIIC[Pro7Hyp] analogue were approximately 2-fold higher than for MVIIC under a variety of optimized oxidation conditions. For alpha-conotoxins ImI and GI, the hydroxylation of the conserved Pro residue improved their folding but impaired their activities against target receptors. Since prolyl-4-hydroxylase and protein disulfide isomerase coexist as a heterotetramer in the ER, we discuss the effects of Hyp on the folding of conotoxins in the context of cis-trans isomerization of Pro and Hyp. Taken together, our data suggest that proline hydroxylation is important for both in vitro oxidative folding and the bioactivity of conotoxins.  相似文献   

6.
Trans-4-hydroxyproline (Hyp) in eukaryotic proteins arises from post-translational modification of proline residues. Because the modification enzyme is not present in prokaryotes, no natural means exists to incorporate Hyp into proteins synthesized in Escherichia coli. We show here that under appropriate culture conditions Hyp is incorporated co-translationally directly at proline codons in genes expressed in E. coli. The use of Hyp by E. coli protein synthesis machinery under typical culture conditions is not adequate to support protein synthesis; however, intracellular concentrations of Hyp sufficient to compensate for the poor use are achieved in media with hyperosmotic sodium chloride concentrations. Hyp incorporation was demonstrated in several recombinant proteins including human Type I collagen polypeptides. A fragment of the human collagen Type I (alpha1) polypeptide with global Hyp for Pro substitution forms a triple helix. Our results demonstrate a remarkable pliancy in the biosynthetic apparatus of bacteria that may be used more generally to incorporate novel amino acids into recombinant proteins.  相似文献   

7.
8.
Plant specific O-glycosylation of proteins includes the attachment of arabinogalactan to hydroxyproline (Hyp) residues. These Hyp residues are generated from peptidyl proline residues by the action of prolyl 4-hydroxylase which requires the ferrous ion. We investigated the effect of the ferrous chelator, 2,2'-dipyridyl on tobacco plants, and found that such treatment reduced the arabinogalactosylation of proteins.  相似文献   

9.
Genetics of L-proline utilization in Escherichia coli.   总被引:16,自引:11,他引:5       下载免费PDF全文
L-Azetidine-2-carboxylate (AC) and 3,4-dehydro-D,L-proline (DHP) are toxic L-proline analogs that can be used to select bacterial mutants defective for L-proline transport. Mutants resistant to AC and DHP are defective for proline transport alone (putP mutants), and mutants resistant to AC but not to DHP are defective both in putP and in the closely linked proline dehydrogenase gene putA. Proline dehydrogenase oxidizes DHP but not AC, probably detoxifying the former compound. These observations were exploited in preparing an otherwise isogenic set of Escherichia coli K-12 strains with well-defined defects in the putP and putA genes. The results of this study suggest that the genetic and biochemical characteristics of proline utilization in E. coli K-12 are closely analogous to those of Salmonella typhimurium.  相似文献   

10.
Trans-4-hydroxy-l -proline (Hyp) is a useful chiral building block for production of many nutritional supplements and pharmaceuticals. However, it is still challenging for industrial production of Hyp due to heavy environmental pollution and low production efficiency. To establish a green and efficient process for Hyp production, the proline 4-hydroxylase (DsP4H) from Dactylosporangium sp. RH1 was overexpressed and functionally characterized in Escherichia coli BL21(DE3). The recombinant DsP4H with l -proline as a substrate exhibited Km, kcat and kcat/Km values up to 0.80 mM, 0.52 s−1 and 0.65 s−1·mM−1 respectively. Furthermore, DsP4H showed the highest activity at 35°C and pH 6.5 towards l -proline. The highest enzyme activity of 175.6 U mg−1 was achieved by optimizing culture parameters. Under the optimal transformation conditions in a 5-l fermenter, Hyp titre, conversion rate and productivity were up to 99.9 g l−1, 99.9% and 2.77 g l−1 h−1 respectively. This strategy described here provides an efficient method for production of Hyp and thus has a great potential in industrial application.  相似文献   

11.
A series of mutants of Escherichia coli K-12 requiring a high concentration of L-proline for growth were isolated from a proline auxotroph strain, JE2133. Genetic studies of the mutants, PT19, PT21, and PT22, showed that all the mutations (proT) were point mutations, and these were mapped at 82 min on the E. coli genetic map. Intact cells and cytoplasmic membrane vesicles of these mutants were specifically defective in L-proline transport activity. Strain PT21 had no detectable activity of the L-proline transport carrier at all, and strains PT19 and PT22 had only 1/35 and 1/70, respectively, of the transport activity of the parental strain. The mutants were also shown to have a defect in proline-binding function of the carrier by measuring specific binding of proline to sonically disrupted membranes. These results indicate that the gene proT determines the function of proline carrier in the cytoplasmic membrane.  相似文献   

12.
Plant specific O-glycosylation of proteins includes the attachment of arabinogalactan to hydroxyproline (Hyp) residues. These Hyp residues are generated from peptidyl proline residues by the action of prolyl 4-hydroxylase which requires the ferrous ion. We investigated the effect of the ferrous chelator, 2,2′-dipyridyl on tobacco plants, and found that such treatment reduced the arabinogalactosylation of proteins.  相似文献   

13.
L-脯氨酸-4-羟化酶(L-Proline-4-hydroxylase,P4H)是依赖α-酮戊二酸(α-KG)和Fe2+的双加氧酶成员之一,在反式-4-羟基-L-脯氨酸(trans-4-hydroxy-L-proline,t-4Hyp)等重要手性化合物的生物合成中发挥关键作用。本研究构建了来源于Bradyrhizobium japonicum USDA 6的P4H重组大肠杆菌Escherichia coli BL21(DE3)/p ET-28b-p4h BJ,SDS-PAGE和酶活检测结果表明,该菌株具有表达可溶性P4H和催化合成t-4Hyp的能力。通过优化,确定了该重组菌全细胞催化合成t-4Hyp较优的反应体系和条件:10 m L p H 6.5 80 mmol/LMES缓冲液、9 mmol/L L-Pro,6 mmol/L L-抗坏血酸,6 mmol/Lα-KG,0.8 mmol/L Fe SO4·7H2O,反应温度为35℃;在20 g/L湿细胞的催化反应中,t-4Hyp的合成量达到34.86 mg/L,比优化前(17.53 mg/L)提高了98.86%。该工作为进一步利用P4H生物催化法合成t-4Hyp奠定了一定的技术基础。  相似文献   

14.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the hydroxylation of -X-Pro-Gly- sequences and plays a central role in the synthesis of all collagens. The [alpha(I)]2beta2 type I enzyme is effectively inhibited by poly(L-proline), whereas the [alpha(II)]2beta2 type II enzyme is not. We report here that the poly(L-proline) and (Pro-Pro-Gly)10 peptide substrate-binding domain of prolyl 4-hydroxylase is distinct from the catalytic domain and consists of approximately 100 amino acids. Peptides of 10-19 kDa beginning around residue 140 in the 517 residue alpha(I) subunit remained bound to poly(L-proline) agarose after limited proteolysis of the human type I enzyme tetramer. A recombinant polypeptide corresponding to the alpha(I) subunit residues 138-244 and expressed in Escherichia coli was soluble, became effectively bound to poly(L-proline) agarose and could be eluted with (Pro-Pro-Gly)10. This polypeptide is distinct from the SH3 and WW domains, and from profilin, and thus represents a new type of proline-rich peptide-binding module. Studies with enzyme tetramers containing mutated alpha subunits demonstrated that the presence of a glutamate and a glutamine in the alpha(II) subunit in the positions corresponding to Ile182 and Tyr233 in the alpha(I) subunit explains most of the lack of poly(L-proline) binding of the type II prolyl 4-hydroxylase. Keywords: collagen/dioxygenases/peptide-binding domain/ proline-rich/prolyl hydroxylase  相似文献   

15.
The membrane carrier for L-proline (product of the putP gene) of Escherichia coli K12 was solubilized and functionally reconstituted with E. coli phospholipid by the cholate dilution method. The counterflow activity of the reconstituted system was studied by preloading the proteoliposomes with either L-proline or the proline analogues: L-azetidine-2-carboxylate or 3,4-dehydro-L-proline. The dilution of such preloaded proteoliposomes into a buffer containing [3H]proline resulted in the accumulation of this amino acid against a considerable concentration gradient. A second driving force for proline accumulation was an electrochemical potential difference for Na+ across the membrane. More than a 10-fold accumulation was seen with a sodium electrochemical gradient while no accumulation was found with proton motive force alone. The optimal pH for the L-proline carrier activities for both counterflow and sodium gradient-driven uptake was between pH 6.0 and 7.0. The stoichiometry of the co-transport system was approximately one Na+ for one proline. The effect of different phospholipids on the proline transport activity of the reconstituted carrier was also studied. Both phosphatidylethanolamine and phosphatidylglycerol stimulate the carrier activity while phosphatidylcholine and cardiolipin were almost inactive.  相似文献   

16.
The formation of 3-hydroxyproline was studied with crude rat kidney cortex extract as a source of enzyme and chick embryo tendon protocollagen and procollagen or cartilage protocollagen as a substrate. Synthesis of 3-hydroxyproline was observed with all these substrates and the formation of 3-hydroxyproline ranged up to seven residues per pro-alpha-chain. The highest rate of 3-hydroxylation took place at 20 degrees C and the reaction required Fe2+, O2,2-oxoglutarate and ascorbate. The formation of 3-hydroxyproline was affected by chain length and the conformation of the substrate, in that longer polypeptide chains proved better substrates, while the native triple-helical conformation of protocollagen or procollagen completely prevented the reaction. Formation of 3-hydroxyproline with tendon procollagen as a substrate was not inhibited by antiserum to prolyl 4-hydroxylase or by poly(L-proline) when these substances were used in concentrations which clearly inhibited 4-hydroxyproline formation with tendon protocollagen as a substrate. Furthermore, pure prolyl 4-hydroxylase did not synthesize any 3-hydroxyproline under conditions in which the crude rat kidney cortex enzyme would readily do so. The data thus strongly suggest that prolyl 3-hydroxylase and prolyl 4-hydroxylase are separate enzymes.  相似文献   

17.
An F1-ATPase-defective mutant, TBLA-1, was constructed by the transduction of a defective gene for the a subunit of F1-ATPase, atpA401, into Escherichia coli W1485lip2, a lipoic acid-requiring pyruvic acid producer. The pyruvic acid production of the strain TBLA-1 was found to be improved markedly compared with that of strain W1485lip2. In cultures using a jar fermentor, the strain W1485lip2 consumed 50 g/liter of glucose and produced 25 g/liter of pyruvic acid after culture for 32 h, while strain TBLA-1 consumed the same amount of glucose, and produced more than 30 g/liter of pyruvic acid in a 24-h culture. A revertant, No. 63–1, derived from the strain TBLA-1, had a normal level of F1-ATPase activity, and showed a similar pattern of pyruvic acid production to that of strain W1485lip2.  相似文献   

18.
19.
The age (4 weeks vs 5 weeks vs 6.5 weeks) at which dietary restriction of vitamin D and calcium is initiated has a profound effect on the resulting concentration of serum calcium, urinary cAMP and on renal 25-hydroxyvitamin D3-1-hydroxylase (1-hydroxylase) activity in normal (+/Y) mice; no such age relationship is apparent in Hyp/Y littermates. After 40 days on the restrictive diet, it was found that the younger the +/Y mice at the time of diet initiation, the lower the resulting serum calcium (4 weeks less than 5 weeks less than 6.5 weeks) and the higher the urinary cAMP and 1-hydroxylase activity (4 weeks greater than 5 weeks greater than 6.5 weeks). Age on diet has no effect on serum phosphate and fractional excretion index of phosphate in +/Y and Hyp/Y littermates. Renal 1-hydroxylase activity is significantly lower than normal in the younger groups of Hyp/Y mice whereas 24-hydroxylase (25-hydroxyvitamin D3-24-hydroxylase) activity is higher than normal in all groups of Hyp/Y mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号