首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inability to account for the availability of individuals in the study area during capture–mark–recapture (CMR) studies and the resultant confounding of parameter estimates can make correct interpretation of CMR model parameter estimates difficult. Although important advances based on the Cormack–Jolly–Seber (CJS) model have resulted in estimators of true survival that work by unconfounding either death or recapture probability from availability for capture in the study area, these methods rely on the researcher's ability to select a method that is correctly matched to emigration patterns in the population. If incorrect assumptions regarding site fidelity (non‐movement) are made, it may be difficult or impossible as well as costly to change the study design once the incorrect assumption is discovered. Subtleties in characteristics of movement (e.g. life history‐dependent emigration, nomads vs territory holders) can lead to mixtures in the probability of being available for capture among members of the same population. The result of these mixtures may be only a partial unconfounding of emigration from other CMR model parameters. Biologically‐based differences in individual movement can combine with constraints on study design to further complicate the problem. Because of the intricacies of movement and its interaction with other parameters in CMR models, quantification of and solutions to these problems are needed. Based on our work with stream‐dwelling populations of Atlantic salmon Salmo salar, we used a simulation approach to evaluate existing CMR models under various mixtures of movement probabilities. The Barker joint data model provided unbiased estimates of true survival under all conditions tested. The CJS and robust design models provided similarly unbiased estimates of true survival but only when emigration information could be incorporated directly into individual encounter histories. For the robust design model, Markovian emigration (future availability for capture depends on an individual's current location) was a difficult emigration pattern to detect unless survival and especially recapture probability were high. Additionally, when local movement was high relative to study area boundaries and movement became more diffuse (e.g. a random walk), local movement and permanent emigration were difficult to distinguish and had consequences for correctly interpreting the survival parameter being estimated (apparent survival vs true survival).  相似文献   

2.
3.
4.
5.
Animal dispersal is associated with diverse costs and benefits that vary among individuals based on phenotype and ecological conditions. For example, females may disperse when males benefit more from defending territories in familiar environments. Similarly, size differences in dispersal propensity may occur when dispersal costs are size-dependent. When individuals do disperse, they may adopt behavioral strategies that minimize dispersal costs. Dispersing fish, for example, may travel within shoals to reduce predation risks. Further, kin shoaling may augment inclusive fitness by reducing predation of relatives. However, studies are lacking on the role of kin shoaling in dispersal. We explored how sex and size influence dispersal and kin shoaling in the cichlid Neolamprologus caudopunctatus. We microsatellite genotyped over 900 individuals from two populations separated by a potential dispersal barrier, and documented patterns of population structure, migration and within-shoal relatedness. Genetic differentiation across the barrier was greater for smaller than larger fish, suggesting larger fish had dispersed longer distances. Females exhibited weaker genetic differentiation and 11 times higher migration rates than males, indicating longer-distance female-biased dispersal. Small females frequently shoaled with siblings, possibly offsetting dispersal costs associated with higher predation risks. In contrast, small males appeared to avoid kin shoaling, possibly to avoid local resource competition. In summary, long-distance dispersal in N. caudopunctatus appears to be female-biased, and kin-based shoaling by small females may represent a behavioral adaptation that reduces dispersal costs. Our study appears to be the first to provide evidence that sex differences in dispersal influence sex differences in kin shoaling.  相似文献   

6.
7.
8.
9.
1. The harbour seal population Phoca vitulina in the entire Wadden Sea was severely depleted due to a virus-epizootic during 1988. A comprehensive study on the population biology and activity patterns was subsequently initiated to design a management and conservation plan. The main objective of this study was to estimate harbour seal abundance in the different regions of the Wadden Sea.
2. We investigated the potential of a mark–recapture experiment using VHF radio-tags in combination with repeated aerial surveys to estimate the number of harbour seals in the Dutch part of the Wadden Sea. The number of harbour seals hauled-out and the presence of any radio-tagged seals was monitored during seven aerial surveys of all known haul-out sites in the Dutch Wadden Sea over the 1994 breeding season.
3. A maximum likelihood (ML) estimator was developed to infer the rate of tag-loss and the size of the local prepupping population.
4. The ML estimate of the number of harbour seals in the Dutch Wadden Sea was 1536 (95% confidence limits were 1225 and 2200). The corresponding maximum proportion of seals hauled-out was 68%.
5. The use of VHF radio-tags which can be monitored from the air provides a way of correcting aerial survey counts for the proportion of harbour seals hauled-out during the surveys. Since haul-out behaviour may be influenced by local conditions, such as exposure time of sand banks, we recommend this technique be repeated in other areas of the Wadden Sea rather than using the estimates from the current study in other areas.  相似文献   

10.
1. There may be bias associated with mark–recapture experiments used to estimate age and growth of freshwater mussels. Using subsets of a mark–recapture dataset for Quadrula pustulosa, I examined how age and growth parameter estimates are affected by (i) the range and skew of the data and (ii) growth reduction due to handling. I compared predictions from von Bertalanffy growth models based on mark–recapture data with direct observation of mussel age and growth inferred from validated shell rings. 2. Growth models based on a dataset that included observations from a wide range of length classes (spanning ≥ the upper 50% of the population length range) produced only slightly biased age estimates for small and medium‐sized individuals (overestimated by 1–2 years relative to estimates from validated shell rings) but estimates became increasingly biased for larger individuals. Growth models using data that included only observations of larger animals (< the upper 50% of length range) overestimated age for all length classes, and estimated maximum age was two to six times greater than the maximum age observed in the population (47 years). Similarly, growth models using a left‐skewed dataset overestimated age. 3. Reductions of growth due to repeated handling also resulted in overestimates of age. The estimated age of mussels that were handled in two consecutive years was as much as twice that of mussels that were handled only once over the same period. Assuming a constant reduction in the annual rate of growth, handling an individual for five consecutive years could result in an estimated age that is five times too high. 4. These findings show that mark–recapture methods have serious limitations for estimating mussel age and growth. A previous paper (Freshwater Biology, 46, 2001, 1349) presented longevity estimates for three mussel species that were an order of magnitude higher than estimates inferred from shell rings. Because those estimates of extreme longevity were based on mark–recapture methods and subject to multiple, additive sources of bias, they cannot be considered accurate representations of life span and cannot be used to conclude that traditional methods of bivalve ageing by interpretation of shell rings are flawed.  相似文献   

11.
In their winter quarters, migrant birds may either remain within a small area (resident strategy) or move frequently over a large area looking for locally abundant food (transient strategy). It has been suggested that both strategies could simultaneously occur in the same population. We used time-since-marking capture–recapture models to infer the coexistence of these two behavioural strategies (transient and resident) among wintering Blackcaps Sylvia atricapilla using weekly recapture data over a 7-year period. A related question is whether Blackcaps, if surviving to the next winter, always return to the same wintering area, so we also used this approach to analyse winter site fidelity and to estimate annual survival probabilities. Model selection supported the existence of heterogeneity in survival estimates for both the within-season and the interannual survival probabilities, i.e. there was evidence for the existence of transients. It was estimated that 26% of the Blackcaps were resident during the winter. Mean apparent annual survival probability was 0.46 (se = ±0.11). However, there was some evidence suggesting that not all individuals showed winter site fidelity. The estimated proportion of individuals that, if alive, returned to the wintering area was 28%. This is the first study to show the existence of these two behavioural strategies (residence and transience) among wintering Blackcaps, and the first confirming this pattern using capture–recapture models. These models considering transient and resident dynamics may become an important tool with which to analyse wintering strategies.  相似文献   

12.
G. Rakowitz    J. Kube&#;ka    C. Fesl    H. Keckeis 《Journal of fish biology》2009,75(6):1356-1370
Hydroacoustic counting and a three-year mark–recapture study with passive integrated transponders (PIT tags) were used to estimate the size of a spawning population of nase Chondrostoma nasus , a threatened potamodromous cyprinid that undertakes annual spawning migrations into a tributary of the Danube River. In 2005, the estimates of the size of the spawning population from the hydroacoustic counts ( N = 2234, 95% CL 1929–2538) and from the Jolly–Seber model ( N = 1198, 95% CL 461–5842) corresponded well. Estimates from the jackknife-estimator based on the hydroacoustic counts yielded slightly higher values ( N = 2783, 95% CL 2529–3037), but were still in the same order of magnitude as those from the hydroacoustic and mark–recapture approach. At low run-size, hydroacoustic counting was more time consuming and technically demanding than mark–recapture studies. At the same time, it was non-invasive, provided real-time data on a fine temporal scale, and estimates showed less variability than the Jolly–Seber model. Mark–recapture of fish in spawning streams involved substantial disturbance at a sensitive stage of the life cycle. Hence, hydroacoustics is highly suited for population estimates of threatened potamodromous fishes, where interference needs to be minimized.  相似文献   

13.
14.
Aim The aim of this study was to use photographs of the unique pattern on the ventral surface of the flukes to estimate the abundance of humpback whales (Megaptera novaeangliae) in a discrete feeding aggregation in northern Southeast Alaska. Location The study was located in northern Southeast Alaska, USA, in the eastern North Pacific Ocean. Methods This study evaluated mark–recapture models, ranging from the simpler models (pooled and stratified, closed Petersen estimators) to more complex multi‐strata models (closed Darroch and open Hilborn). The Akaike Information Criterion, corrected (AICc) was used as a model comparison statistic. Results Our best estimate of whale abundance in northern Southeast Alaska in 2000 is 961 whales [95% confidence interval (657, 1076)]. This estimate comes from the Hilborn open, multi‐strata approach with constant migration over time, time‐dependent capture probabilities by area, and a fixed survival rate of 0.98. The simpler models were problematic owing to several aspects of whale behaviour, including that (1) the whales did not mix randomly throughout the study area, (2) some whales emigrated temporarily outside the study area and were not available for capture, and (3) whales were not equally identifiable because they did not behave in the same way when they showed their flukes upon diving. This led to heterogeneity in capture probability and a bias in the estimates. The more complex models stratified by area, and using migration movements among areas, compensated for some of these issues when estimating population size. Main conclusions We believe that the Hilborn open, multi‐strata model produced the best estimate because: (1) it incorporated the best information about survival, (2) it used detailed information about the various release groups, (3) the analysis provided an integrated environment in which parameters such as migration and capture probabilities are shared, (4) the three strata encompassed a large portion of the areas used by whales, and (5) the Hilborn model selected was superior in terms of model selection criteria and biological realism. These data provide valuable insights into the numbers and movements of humpback whales in three areas of Southeast Alaska.  相似文献   

15.
Sex‐biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear‐encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male‐mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude‐associated selection. Our results indicate that in species with sex‐biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments.  相似文献   

16.
17.
18.
19.
Amphibians display wide variations in life‐history traits and life cycles that should prove useful to explore the evolution of sex‐biased dispersal, but quantitative data on sex‐specific dispersal patterns are scarce. Here, we focused on Salamandra atra, an endemic alpine species showing peculiar life‐history traits. Strictly terrestrial and viviparous, the species has a promiscuous mating system, and females reproduce only every 3 to 4 years. In the present study, we provide quantitative estimates of asymmetries in male vs. female dispersal using both field‐based (mark–recapture) and genetic approaches (detection of sex‐biased dispersal and estimates of migration rates based on the contrast in genetic structure across sexes and age classes). Our results revealed a high level of gene flow among populations, which stems exclusively from male dispersal. We hypothesize that philopatric females benefit from being familiar with their natal area for the acquisition and defence of an appropriate shelter, while male dispersal has been secondarily favoured by inbreeding avoidance. Together with other studies on amphibians, our results indicate that a species' mating system alone is a poor predictor of sex‐linked differences in dispersal, in particular for promiscuous species. Further studies should focus more directly on the proximate forces that favour or limit dispersal to refine our understanding of the evolution of sex‐biased dispersal in animals.  相似文献   

20.
Variation of reproductive success, an important determinant of the opportunity for sexual selection, is an outcome of competition within one sex for mating with members of the other sex. In promiscuous species, males typically compete for access to females, and their reproductive strategies are strongly related to the spatial distribution of females. I used 10 microsatellite loci and the mtDNA control region to determine seasonal differences in the reproductive success of males and females of the common vole (Microtus arvalis), one of the most numerous mammals in Europe. The sex-related spatial structure and bias in dispersal between genders were also assessed. Standardized variance of the reproductive success of females did not vary seasonally due to the continuity of female philopatry throughout the breeding season and to the constancy of the number of females reproducing successfully in each season. The males are the dispersing sex, undergoing both natal and breeding dispersal. Their standardized variance of reproductive success was significantly higher than that for females in July, when only two males monopolized 80% of the females in the population and when variance of male reproductive success was highest (Im = 7.70). The seasonally varying and high standardized variance of male reproductive success may be explained by male-male competition for matings, coupled with seasonal changes in the age structure of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号