首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Chick 25-hydroxyvitamin D3-1-hydroxylase, a cytochrome P-450 monooxygenase with a molecular weight of 57 kDa, can be isolated as described by Mandel et al. (1990b). Under normal physiological circumstances, it occurs exclusively in kidney mitochondria. An isozyme of the 1-hydroxylase, known as the 24-hydroxylase, which uses the same substrate to yield an isomeric product, is also a cytochrome P-450 monooxygenase, has a molecular weight of 55 kDa, and likewise occurs in kidney mitochondria. The amino-terminal sequences of the first 10 residues of the two isozymes are 100% homologous. Monoclonal antibodies of the IgM class raised against the 1-hydroxylase, which quantitatively discriminate against other P-450 cytochromes of mitochondrial or microsomal origin, recognize and interact with the 24-hydroxylase as an antigen. In the present study we show that the intestine, which is the only non-renal tissue with demonstrable 24-hydroxylase activity, gives a positive peroxidase-antiperoxidase immunohistochemical reaction using the monoclonal antibodies against the 1-hydroxylase. The reactions revealed that the antigen in the kidney is restricted to the cortical proximal tubular cells while in the intestine, the antigen is localized in the enterocytes of the villi. In kidney medullary or intestinal crypt cells, or in liver, heart and lung tissues where 1-hydroxylase or 24-hydroxylase activity could not be detected using cell or tissue homogenates, the immunohistochemical reactions were also negative. Since it has been reported that chick embryonic intestine possesses 1-hydroxylase activity that is absent in the mature intestine, our results would suggest that the mature intestinal 24-hydroxylase represents a modified 1-hydroxylase as a consequence of developmentally imposed requirements regulating calcium homeostatic activity in this tissue. The difference in the molecular weights of the two enzymes would indicate either genomic processing prior to the translation of their respective mRNAs, or a post-translational processing of the larger 1-hydroxylase to the smaller 24-hydroxylase. The abbreviations used are: 25-OH-D3, 25-hydroxyvitamin D3; 1,25-(OH)2D3, 1,25-dihydroxyvitamin D3; 24,25-(OH)2D3, 24,25-dihydroxyvitamin D3, NADP, nicotinamide adenine dinucleotide phosphate  相似文献   

2.
The chick kidney mitochondrial cytochrome P-450 1,25-dihydroxyvitamin D3 24-hydroxylase was partially purified by sequential polyethylene glycol precipitation, aminohexyl-Sepharose 4B, and hydroxylapatite chromatography. The specific activity of the final preparation, when reconstituted with NADPH, adrenodoxin, and adrenodoxin reductase, was 245 pmol/min/mg of protein or 0.56 pmol/min/pmol of P-450. The specific cytochrome P-450 content was 0.45-0.73 nmol/mg of protein. BALB/c mice immunized with this preparation developed serum polyclonal antibodies to the 24-hydroxylase, as demonstrated by immunoprecipitation. Splenic lymphocytes from an immunized mouse were fused with myeloma NSI/1-Ag-4-1 cells, and hybridomas secreting monoclonal antibodies to the 24-hydroxylase were detected by immunoprecipitation. The hybridoma lines were cloned by limiting dilution and further characterized as IgG1, IgG3, and IgM subclasses. In one-dimensional immunoblots of soluble 24-hydroxylase preparations, the monoclonal antibodies revealed a single band with an apparent molecular weight of 59,000. The monoclonal antibodies did not cross-react with cytochrome P-450s from other species but immunoprecipitated and immunoblotted a soluble chick renal mitochondrial 25-hydroxyvitamin D3 1 alpha-hydroxylase preparation, demonstrating the close similarity of these two hydroxylases. These antibodies were coupled to Sepharose CL-4B and used to isolate to homogeneity the two enzymes from chick kidney mitochondria. Amino-terminal sequences and amino acid composition data demonstrate that these enzymes are different but homologous.  相似文献   

3.
A cytochrome P-450 that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3 (P-450cc24: P-450cholecalciferol24) was purified to electrophoretic homogeneity from the kidney mitochondria of female rats treated with vitamin D3 (Ohyama, Y., Hayashi, S., and Okuda, K. (1989) FEBS Lett. 255, 405-408). The molecular weight was 53,000, and its absorption spectrum showed peaks characteristic of cytochrome P-450. The turnover number was 22 min-1 and the specific content was 2.8 nmol/mg protein. The N-terminal amino acid sequence, Arg-Ala-Pro-Lys-Glu-Val-Pro-Leu-, is different from the N-terminal sequence of any other cytochrome P-450s so far reported. Upon reconstitution with the electron-transferring system of the adrenal mitochondria, the enzyme showed a high activity in hydroxylating 25-hydroxyvitamin D3 as well as 1 alpha,25-dihydroxyvitamin D3 at position 24. However, the purified enzyme hydroxylated neither vitamin D3 nor 1 alpha-hydroxyvitamin D3. The enzyme was also inactive toward xenobiotics. The enzyme hydroxylated 25-hydroxyvitamin D3 at position 24 but not at 1 alpha, indicating that the enzyme is distinct from that catalyzing 1 alpha-hydroxylation. The reaction followed Michaelis-Menten kinetics, and the Km value for 25-hydroxyvitamin D3 was 2.8 microM. Both vitamin D3 and 1 alpha-hydroxyvitamin D3 inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 in a competitive, concentration-dependent manner. 25-Hydroxyvitamin D3 24-hydroxylase activity was significantly inhibited by 7,8-benzoflavone, ketoconazole, and CO, whereas it was only slightly inhibited by aminoglutethimide, metyrapone, and SKF-525A. Mouse antibodies raised against the cytochrome P-450 inhibited the reaction about 70% and reacted with the P-450cc24 in immunoblotting but did not react with other kinds of cytochrome P-450 in rat liver microsomes and mitochondria.  相似文献   

4.
Polyclonal antibody elicited in a rabbit against purified cytochrome P-450cc25, which catalyzes 25-hydroxylation of vitamin D3, inhibited not only 25-hydroxylation of cholecalciferol and 1 alpha-hydroxycholecalciferol, but also 16 alpha- and 2 alpha-hydroxylation of testosterone catalyzed by the purified P-450cc25 preparation. Antibody inhibition experiments with microsomes revealed that most 16 alpha- and 2 alpha-hydroxylation of testosterone and most 25-hydroxylation of cholecalciferol by male rat liver microsomes were catalyzed by P-450cc25. In order to examine the identity of cholecalciferol 25-hydroxylase and testosterone 16 alpha-hydroxylase, monoclonal antibodies recognizing three different epitopes of P-450cc25 were prepared from hybridoma clones produced by fusion of mouse myeloma cells (P3X63Ag8U1) with the spleen cells of immunized BALB/c mouse. All of these monoclonal antibodies inhibited both 25-hydroxylation of 1 alpha-hydroxycholecalciferol and 16 alpha-hydroxylation of testosterone by purified P-450cc25. These observations suggested that immunochemically indistinguishable form(s) of cytochrome P-450 catalyzed both reactions.  相似文献   

5.
Rat cytochrome P-450(M-1) cDNA was expressed in Saccharomyces cerevisiae TD1 cells by using a yeast-Escherichia coli shuttle vector consisting of P-450(M-1) cDNA, yeast alcohol dehydrogenase promoter and yeast cytochrome c terminator. The yeast cells synthesized up to 2 X 10(5) molecules of P-450(M-1) per cell. The microsomal fraction prepared from the transformed cells contained 0.1 nmol of cytochrome P-450 per mg of protein. The expressed cytochrome P-450 catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone in accordance with the catalytic activity of P-450(M-1), but did not hydroxylate vitamin D3 or 1 alpha-hydroxycholecalciferol at the 25 position. The expressed cytochrome P-450 also catalyzed the oxidation of several drugs and did not show 25-hydroxylation activity toward 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. However, it cross-reacted with the polyclonal and monoclonal antibodies elicited against purified P-450cc25 which catalyzed the 25-hydroxylation of vitamin D3. These results indicated that P-450(M-1) cDNA coded the 2 alpha- and 16 alpha-hydroxylase of testosterone, and that these two positions of testosterone are hydroxylated by a single form of cytochrome P-450. Vitamin D3 25-hydroxylase and testosterone 16 alpha- and 2 alpha-hydroxylase are different gene products, although these two hydroxylase activities are immunochemically indistinguishable.  相似文献   

6.
When bovine proximal tubule cells are placed in primary culture, they are subject to elevated oxidative stress which acts to limit the expression of mitochondrial vitamin D3 1 alpha- and 24-hydroxylase activities. This increased oxidative stress was demonstrated by increased production of cell and mitochondrial membrane lipid hyperperoxides (LOOH). This increased production was prevented by the addition of the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Cell and mitochondrial membrane LOOH increased from 1 to 2 pmol/mg protein on the day of plating to 70-90 pmol/mg protein after 6 days in culture. Pretreatment of cultures with BHA and BHT resulted in membrane LOOH of 15-20 pmol/mg protein after 6 days. Mitochondrial LOOH production was greater than total cell LOOH after 6 days. The increase in cellular oxidative stress was paralleled by decreases in both 1 alpha- and 24-hydroxylase activities toward 25-OH D3. Mitochondrial hydroxylase activities were inversely proportional to the increase in mitochondrial membrane LOOH production. Mitochondrial cytochrome P-450 content, determined spectrophotometrically, was decreased over time in culture. Mitochondrial cytochrome P-450 content determined by a specific polyclonal antibody in an enzyme-linked immunosorbant assay also decreased over time in culture. Specificity of polyclonal antibodies, raised against rat liver microsomal cytochrome P-450 RLM5, was demonstrated by the immunosequestration of both 1 alpha- and 24-hydroxylase activities from a partially purified preparation of renal mitochondrial cytochrome P-450. BHA showed the loss of 1 alpha- and 24-hydroxylase activities and mitochondrial P-450 content measured by all criteria. These experiments indicate that oxidative stress-mediated changes in hydroxylase activities are mediated directly by changes in hydroxylase content and not at distal sites. A partially purified preparation of bovine proximal tubule mitochondrial cytochrome P-450, with purified renal ferredoxin, ferredoxin reductase, and NADPH, expressed both 1 alpha- and 24-hydroxylase activities toward 25-OH D3. LOOH, derived from mitochondrial membranes of 5-day-old cultures, when added to this mixture, caused a dose-dependent decrease in both activities. These experiments suggested that an increase in mitochondrial LOOH production resulted in a loss of 1 alpha- and 24-hydroxylase activities. 1 alpha-Hydroxylase was more sensitive to the effects of LOOH treatment than 24-hydroxylase. At a ratio of LOOH:P-450 of 5:1 (molar), all 1 alpha-hydroxylase activity was lost but 50% of the 24-hydroxylase activity remained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Immunochemical studies on cytochrome P-450 in adrenal microsomes   总被引:2,自引:0,他引:2  
An antibody was prepared against electrophoretically homogeneous cytochrome P-450C21 purified from bovine adrenal microsomes. This antibody was used to compare various cytochromes P-450 in bovine and guinea pig adrenal microsomes. In an Ouchterlony double diffusion test, a spur formation was observed between the precipitin lines of the purified bovine cytochrome P-450C21 and guinea pig adrenal microsomes against anti-cytochrome P-450C21 IgG. Anti-cytochrome P-450C21 IgG inhibited 21-hydroxylation both of bovine and guinea pig adrenal microsomes but the inhibition was much more effective in the bovine microsomes than in the guinea pig microsomes. These results suggest that the 21-hydroxylase in the guinea pig microsomes has some molecular similarities to the bovine cytochrome P-450C21 and a part of the antibodies cross-reacts with the 21-hydroxylase in the guinea pig microsomes. Anti-cytochrome P-450C21 IgG did not inhibit the activities of 17 alpha-hydroxylase and C17,20-lyase in the bovine and guinea pig microsomes but stimulated these activities. This result shows that different species of cytochrome P-450 other than cytochrome P-450C21 catalyzes the 17 alpha-hydroxylation and C17,20 bond cleavage. The stimulation of 17 alpha-hydroxylation and C17,20 bond cleavage by blocking 21-hydroxylation indicates that the electron transfer systems for various cytochromes P-450 are intimately linked in adrenal microsomes.  相似文献   

8.
Monoclonal antibodies developed to cytochrome P-450 1, some of which react with proteins in addition to P-450 1, were used to investigate the differential expression of P-450 1 dependent 21-hydroxylase activity in renal tissue of rabbits exhibiting differences in hepatic 21-hydroxylase activity. Using immunohistochemical techniques, the monoclonal antibodies, 2F5 and 3C3, localized protein in the S2 and S3 segments of the proximal tubule in the renal cortex. These two monoclonal antibodies, 2F5 and 3C3, reacted with a kidney protein that migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a relative electrophoretic mobility that did not correspond to known rabbit hepatic isozymes and was termed P-450 K. Antibodies specific for P-450 1 and 3b, 1F11 and 8-27, respectively, produced no staining in kidney. The protein recognized by the 2F5 and 3C3 antibodies is immunologically distinct from cytochrome P-450s 1, 2, and 3b. The rate of 21-hydroxylation of progesterone was shown to be approximately 100-fold less in kidney than liver microsomes where this pathway is largely catalyzed by P-450 1. The activity of the kidney microsomes was not inhibited by antibodies directed to P-450 1. In addition, the variation observed for the 21-hydroxylase activity in the hepatic microsomal fraction of outbred New Zealand white rabbits was not evident in kidney microsomes from these same animals. The 2F5 antibody was found, however, to be inhibitory (about 50%) of the 11-hydroxylation of lauric acid in kidney microsomes. This suggests that P-450 K participates in lauric acid 11-hydroxylase activity. The treatment of rabbits with phenobarbital, but not 2,3,7,8-tetrachlorodibenzo-p-dioxin, was found to induce the levels of P-450 K.  相似文献   

9.
Cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from pig kidney microsomes. The enzyme fraction contained 7 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 50,500 upon SDS/polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 1,000 times more efficiently, and 25-hydroxylation of 1 alpha-hydroxyvitamin D3 up to 4000 times more efficiently, than the microsomes. The cytochrome P-450 required microsomal NADPH-cytochrome P-450 reductase for catalytic activity. Mitochondrial ferredoxin and ferredoxin reductase could not replace microsomal NADPH-cytochrome P-450 reductase. The enzyme preparation showed no detectable 25-hydroxylase activity towards vitamin D2 or 1 alpha-hydroxylase activity towards 25-hydroxyvitamin D3. CO inhibited the 25-hydroxylation by more than 85%. Mannitol, hydroquinone, catalase and superoxide dismutase did not affect the 25-hydroxylation. The possible role of the kidney microsomal cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

10.
Cholesterol 7 alpha-hydroxylase, the cytochrome P-450-dependent and rate-controlling enzyme of bile acid synthesis, was purified from rat and human liver microsomes. The purified fractions were assayed in a reconstituted system containing [4-14C]cholesterol, and cholesterol 7 alpha-hydroxylase activities in these fractions increased 500-600-fold relative to whole microsomes. Polyacrylamide gel electrophoresis of rat microsomes followed by immunoblotting with polyclonal rabbit antisera raised against purified cholesterol 7 alpha-hydroxylases revealed two peaks at molecular masses of 47,000 and 49,000 daltons for both rat and human fractions. Increasing amounts of rabbit anti-rat and anti-human antibodies progressively inhibited rat microsomal cholesterol 7 alpha-hydroxylase activity up to 80%. In contrast, monospecific antibodies raised against other purified cytochrome P-450 enzymes (P-450f, P-450g, and P-450j) did not inhibit rat or human cholesterol 7 alpha-hydroxylase activity. Immunoblots of rat microsomes with the rabbit anti-rat cholesterol 7 alpha-hydroxylase antibody demonstrated that the antibody reacted quantitatively with the rat microsomal enzyme. Microsomes from cholesterol-fed rats showed increased cholesterol 7 alpha-hydroxylase mass, whereas treatment with pravastatin, an inhibitor of hydroxy-methylglutaryl-coenzyme A reductase, reduced enzyme mass. Microsomes from starved rats contained slightly less cholesterol 7 alpha-hydroxylase protein than chow-fed control rats. These results indicate a similarity in molecular mass, structure, and antigenicity between rat and human cholesterol 7 alpha-hydroxylases; demonstrate the production of inhibiting anti-cholesterol 7 alpha-hydroxylase antibodies that can be used to measure the change in cholesterol 7 alpha-hydroxylase enzyme mass under various conditions; and emphasize the unique structure of cholesterol 7 alpha-hydroxylase with respect to other cytochrome P-450-dependent hydroxylases.  相似文献   

11.
The inducer of the liver monooxygenase system perfluorodecalin added to microsomes as a submicron emulsion forms an enzyme-substrate complex with cytochrome P-450. The K(app) values for the perfluorodecalin binding to cytochrome P-450 in microsomes isolated from the livers of control and phenobarbital-treated rats are 5 x 10(-5) M and 2.3 x 10(-6) M, respectively. Perfluorodecalin competitively inhibits the binding of substrates to cytochrome P-450 and decreases the rates of monooxygenase reactions. Perfluorodecalin extrusion from the active center of cytochrome P-450 occurs when an excess of perfluorocarbons non-interacting with cytochrome P-450 is added to microsomes. There is a significant vagueness in the rates of various monooxygenase reactions because of simultaneous induction and inhibition of monooxygenase enzymes after perfluorodecalin administration to rats. The data obtained are consistent with the hypothesis that constitutive forms of cytochrome P-450 are primary receptors for xenobiotic-inducers of phenobarbital-type cytochrome P-450 isoforms.  相似文献   

12.
When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase.  相似文献   

13.
We identified type II P-450(15)alpha as mouse coumarin 7-hydroxylase (P-450coh). Unlike type I P-450(15)alpha, the other member within the mouse steroid 15 alpha-hydroxylase gene family, type II catalyzed little steroid 15 alpha-hydroxylase activity, yet structurally there were only 11 substitutions between type I and type II P-450(15)alphaS within their 494 amino acid residues (Lindberg et al., 1989), and the N-terminal sequence (21 residues) of P-450coh was identical with that of both P-450(15)alphaS. Induction by pyrazole of coumarin 7-hydroxylase activity correlated well with the increase of type II P-450(15)alpha mRNA in 129/J male and female mice. Pyrazole, on the other hand, was less in males or not effective in females in inducing the 15 alpha-hydroxylase activity and type I P-450(15)alpha mRNA. Expression of type I and II in COS-1 cells revealed that the latter catalyzed coumarin 7-hydroxylase activity at 10 to approximately 14 pmol min-1 (mg of cellular protein)-1. The former, on the other hand, had a high testosterone 15 alpha-hydroxylase but little coumarin 7-hydroxylase activity. It was concluded, therefore, that type II P-450(15)alpha is the mouse coumarin 7-hydroxylase. Identification of type II as the P-450 specific to coumarin 7-hydroxylase activity and characterization of its cDNA and gene, therefore, were significant advances toward understanding the basis of genetic regulation of this activity in mice (known as Coh locus).  相似文献   

14.
Modes of inhibition and binding of ketoconazole, an orally antimycotic agent, to NADPH-cytochrome P-450 dependent enzymes were investigated using subcellular fractions of human and rat testes, human adrenocortical adenoma tissue and rat adrenals and livers. Ketoconazole competitively inhibited the activities of steroid 17 alpha-hydroxylase and C17-20 lyase in rat and human testes, 16 alpha-hydroxylase in human testes and 21-hydroxylase in rat adrenal glands. Ki values were in the order of 10(-8)M for human testicular enzymes, while the order was 10(-7)-10(-6) M for rat adrenal and testicular enzymes. Kinetic studies indicated that ketoconazole bound to cytochrome P-450 and not to other components of monooxygenase systems. Spectrophotometric studies also revealed direct binding of ketoconazole to cytochrome P-450 component by inducing type II difference spectra in all tissue preparations examined, indicating that ketoconazole is possibly a universal inhibitor of NADPH-cytochrome P-450 dependent monooxygenases which are involved in metabolism of many substances including steroids, toxins, carcinogens and others.  相似文献   

15.
Thr-301 of cytochrome P-450 (laurate (omega-1)-hydroxylase) was replaced by Ser, Val, Ile, or Asn via site-directed mutagenesis. The Ser-, Val-, and Asn-mutants had lower laurate (omega-1)-hydroxylase activities than the wild-type P-450. The mutation to Ser did not affect caprate (omega-1)-hydroxylase activity and rather increased caprate omega-hydroxylase activity, but the Val- and Asn-mutants could not hydroxylate caprate. The Ile-mutant was devoid of the hydroxylase activities. The mutation also led to changes in the affinities for the fatty acids and exogenous ligands. Replacement of Thr-301 of cytochrome P-450 (testosterone 16 alpha-hydroxylase) by Ser or Val also affected the activities toward testosterone and progesterone in different ways. These findings indicate that residue 301 of the P-450s plays an important role in determining their substrate specificities.  相似文献   

16.
The chick renal mitochondrial 25-hydroxyvitamin-D3-1 alpha-hydroxylase is composed of three proteins, namely, cytochrome P-450, iron-sulfur protein (ferredoxin) and flavoprotein. Antibodies were raised in rabbits against homogeneous preparations of the ferredoxin. The antibodies were used in indirect immunofluorescence studies to localize the ferrdoxin along the nephron of renal tissues obtained either from vitamin D3-deficient or vitamin D3-sufficient chicks. The ferredoxin is predominantly localized in the glomerulus and proximal convoluted tubules. These results suggest that, in addition to the mitochondrial localization of the 1-hydroxylase, the enzyme may also be present in renal nuclei. The amount of the ferredoxin in kidney, as evidenced by the intensity of fluorescence, appeared to be independent of the vitamin D status of the chick. This finding indicated that changes in the concentration of the renal ferredoxin is not a major factor in the regulation of the 1-hydroxylase activity.  相似文献   

17.
Pig kidney mitochondria were found to catalyze the formation of 26-hydroxycholesterol, an inhibitor of cholesterol biosynthesis. The cholesterol 26-hydroxylase was purified 600-fold. It was present in a mitochondrial enzyme fraction enriched in cytochrome P-450. The cytochrome P-450 fraction required NADPH, mitochondrial ferredoxin and ferredoxin reductase for 26-hydroxylase activity. The mitochondria and the purified 26-hydroxylase preparation also catalyzed 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and intermediate in cholic acid biosynthesis, and of 25-hydroxyvitamin D3. The role of extra-hepatic formation of 26-hydroxycholesterol is discussed.  相似文献   

18.
The absence of antibodies to cholesterol 7 alpha-hydroxylase (EC 1.14.13.17), the rate-determining enzyme for bile acid synthesis, has significantly compromised studies on this protein. Nine antibodies raised against proteins from the cytochrome P-450 gene families (P450I, P450IIA, P450IIB, P450IIC and P450III) were tested as inhibitors of 7 alpha-hydroxylase activity. An antibody raised against a male-predominant P-450 (PB2a, P450h) from the P450IIC gene subfamily was an effective inhibitor of activity in liver microsomal fractions from rat, mouse and hamster. The inhibition could be reversed by the addition of PB2a antigen, indicating structural similarity between cholesterol 7 alpha-hydroxylase and proteins within the P450IIC subfamily. Western blot analysis of hepatic microsomal fractions with the PB2a antibody gave three bands, two of which, like cholesterol 7 alpha-hydroxylase, did not inhibit sexual dimorphism. The intensity of one of the bands (apparent Mr 54,000) correlated with changes observed in activity due to diet [Spearman correlation of 0.800 (P less than 0.01)]. These findings suggest that cholesterol 7 alpha-hydroxylase is a form of P-450 which shares structural similarity with cytochromes P-450 in the P450IIC gene subfamily and that its feedback regulation by bile acid involves protein induction rather than simply post-translational modification.  相似文献   

19.
Aromatase cytochrome P-450 (P-450AROM) was partially purified from human placental microsomes by hydrophobic affinity chromatography using Phenyl-Sepharose and ion-exchange chromatography on DEAE-cellulose. The resulting preparation had a specific activity of 2 nmol/mg protein with respect to cytochrome P-450 content and displayed a type I difference spectrum upon addition of the substrate androstenedione. When the cytochrome P-450-enriched fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained with Coomassie blue, there was an enrichment of two proteins having apparent molecular weights of 50,000 and 55,000. The bands containing these proteins were removed from unstained polyacrylamide gels and injected separately or together into three rabbits. An aliquot of the serum or an immunoglobulin (IgG) fraction prepared from the serum of the rabbit injected with the 55-kDa band or with both the 50- and 55-kDa bands inhibited aromatase activity of human placental microsomes by 80%; this IgG had no effect on 17 alpha-hydroxylase or 21-hydroxylase activities of human fetal adrenal microsomes. In contrast, the serum of the rabbit injected with the 50-kDa band had little capacity to inhibit placental aromatase activity. By immunoblot analysis, it was found that the IgG from the serum of the rabbit immunized with the 55-kDa protein bound specifically to a protein of 55 kDa in human placental microsomes. Monoclonal antibodies were prepared from a hybridoma cell line derived from the spleen cells of mice immunized against the 55-kDa protein. The monoclonal IgG was covalently linked to a Sepharose 4B column and was used for immunoaffinity chromatography of cytochrome P-450AROM. The finding that cytochrome P-450 and the 55-kDa protein were selectively retained by the affinity column and eluted with NaCl (2 M) and glycine (0.2 M, pH 3.0) and that this fraction contained aromatase activity upon reconstitution with purified NADPH-cytochrome P-450 reductase and phospholipid, is indicative that the 55-kDa protein is indeed cytochrome P-450AROM. These findings are also indicative that both the monoclonal and polyclonal IgGs are specific for human cytochrome P-450AROM.  相似文献   

20.
The metabolism of vitamin D is regulated by three major cytochrome P450-containing h hydroxylases—the hepatic 25-hydroxylase, the renal 1-hydroxylase, and the renal and intestinal 24-hydroxylase. In the liver, the 25-hydroxylation reaction is catalyzed by microsomal and mitochondrial cytochrome P450cc25. The microsomal P450 accepts electrons from the NADPH-cytochrome P450 reductase, and the mitochondrial P450 accepts electrons from NADPH-ferredoxin reductase and ferredoxin. In the kidney, the 1- and 24-hydroxylation reactions are catalyzed by mitochondrial cytochromes P450cc1 and P450cc24, respectively. The 24-hydroxylase is also found in vitamin D target tissues such as the intestine. The rat hepatic mitochondrial P450cc25 and the rat renal mitochondrial P450cc24 have been purified, and their cDNAs have been cloned and sequenced. 1,25-Dihydroxyvitamin D, the active metabolite of vitamin D, markedly stimulates renal P450cc24 mRNA and 24-hydroxylase activity in the intact animal and in renal cell lines. This stimulation occurs via a receptor-mediated mechanism requiring new protein synthesis. Despite the availability of a clone, no studies have yet been reported of the regulation of hepatic P450cc25 at the mRNA level. The study of one of the most important enzymes in vitamin D metabolism, the renal 1-hydroxylase which produces the active metabolite, awaits the definitive cloning of the cDNA for the P450cc1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号