首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A number of genetic markers, including ATP1A3, TGFB, CKMM, and PRKCG, define the genetic region on human chromosome 19 containing the myotonic dystrophy locus. These and a number of other DNA probes have been mapped to mouse chromosome 7 utilizing a mouse Mus domesticus/Mus spretus interspecific backcross segregating for the genetic markers pink-eye dilution (p) and chinchilla (cch). The establishment of a highly syntenic group conserved between mouse chromosome 7 and human chromosome 19q indicates the likely position of the homologous gene locus to the human myotonic dystrophy gene on proximal mouse chromosome 7. In addition, we have mapped the muscle ryanodine receptor gene (Ryr) to mouse chromosome 7 and demonstrated its close linkage to the Atpa-2, Tgfb-1, and Ckmm cluster of genes. In humans, the malignant hyperthermia susceptibility locus (MHS) also maps close to this gene cluster. The comparative mapping data support Ryr as a candidate gene for MHS.  相似文献   

2.
A mouse myotube-derived cDNA encoding the Ca(2+)-dependent cell adhesion molecule M-cadherin was used to study the segregation of the corresponding gene Cdh3 in a mouse interspecific backcross. Cdh3 was found to be unlinked to the N-cadherin gene but linked to the E-cadherin (uvomorulin) locus on chromosome 8 in a region of conserved synteny with human chromosome 16q. The gene order cen-Junb-Um-Tat-(Cdh3/Aprt) was determined. The human homologue CDH3 was mapped to chromosome 16q24.1-qter by analyzing human/mouse somatic cell hybrids.  相似文献   

3.
One of the larger contiguous blocks of mouse–human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent “transpositions” of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and human regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3–q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse–human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species.  相似文献   

4.
J Wagstaff  J R Chaillet  M Lalande 《Genomics》1991,11(4):1071-1078
A cDNA encoding the human GABAA receptor beta 3 subunit has been isolated from a brain cDNA library and its nucleotide sequence has been determined. This gene, GABRB3, has recently been mapped to human chromosome 15q11q13, the region deleted in Angelman and Prader-Willi syndromes. The association of distinct phenotypes with maternal versus paternal deletions of this region suggests that one or more genes in this region show parental-origin-dependent expression (genetic imprinting). Comparison of the inferred human beta 3 subunit amino acid sequence with beta 3 subunit sequences from rat, cow, and chicken shows a very high degree of evolutionary conservation. We have used this cDNA to map the mouse beta 3 subunit gene, Gabrb-3, in recombinant inbred strains. The gene is located on mouse chromosome 7, very closely linked to Xmv-33 between Tam-1 and Mtv-1, where two other genes from human 15q11q13 have also been mapped. This provides further evidence for a region of conserved synteny between human chromosome 15q11q13 and mouse chromosome 7. Proximal and distal regions of mouse chromosome 7 show genetic imprinting effects; however, the region of homology with human chromosome 15q11q13 has not yet been associated with these effects.  相似文献   

5.
Chronic granulomatous disease (CGD) is a heterogeneous group of inherited disorders of impaired superoxide production in phagocytes. The most common X-linked recessive form involves the CYBB locus in band Xp21.1 that encodes the membrane-bound beta subunit of the cytochrome b558 complex. Two autosomal recessive forms of CGD result from defects in cytosolic components of the phagocyte NADPH oxidase system, p47phox (NCF1) and p67phox (NCF2). By using human cDNA probes we have mapped the genes for these proteins to chromosomal sites. The combined data from Southern analysis of somatic cell hybrid lines and chromosomal in situ hybridization localize NCF1 to 7q11.23 and NCF2 to band 1q25. The NCF1 localization corrects an erroneous preliminary assignment to chromosome 10. In the mouse, the locus corresponding to NCF2 (Ncf-2) was mapped with somatic cell hybrid panels and recombinant inbred strains to mouse chromosome 1 near Xmv-21 within a region of conserved homology with human chromosome 1 region q21-q32. A second site, probably a processed pseudogene, was identified on mouse chromosome 13.  相似文献   

6.
Using an interspecies backcross, we have mapped the HOX-5 and surfeit (surf) gene clusters within the proximal portion of mouse chromosome 2. While the HOX-5 cluster of homeobox-containing genes has been localized to chromosome 2, bands C3-E1, by in situ hybridization, its more precise position relative to the genes and cloned markers of chromosome 2 was not known. Surfeit, a tight cluster of at least six highly conserved "housekeeping" genes, has not been previously mapped in mouse, but has been localized to human chromosome 9q, a region of the human genome with strong homology to proximal mouse chromosome 2. The data presented here place HOX-5 in the vicinity of the closely linked set of developmental mutations rachiterata, lethargic, and fidget and place surf close to the proto-oncogene Abl, near the centromere of chromosome 2.  相似文献   

7.
An update of the human obesity gene map incorporating published results up to October 1997 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature; single-gene mutation rodent models; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all of these loci reveals that all but chromosome Y of the 24 human chromosomes are represented. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 6, 8, 11, and 20) and several on one chromosome arm only (3p, 4q, 5q, 7q, 12q, 13q, 15q, 15p, 22q, and Xq). Studies reporting negative association and linkage results are also listed, with the exception of the unlinked markers from genome-wide scans.  相似文献   

8.
We have used a panel of eight human/mouse somatic-cell hybrids, each containing various portions of human chromosome 7, and three patient cell lines with interstitial deletions on chromosome 7 for localization of six DNA markers linked to the cystic fibrosis locus. Our data suggest that D7S15 is located in the region 7 cen----q22, that MET is located in 7q22----31, and that D7S8 and 7C22 are located in q22----q32. The hybridization results for COL1A2 and TCRB are consistent with their previous assignment to 7q21----q22 and 7q32, respectively. Given the location of these six markers and their linkage relationships, it is probable that the cystic fibrosis locus is in either the distal region of band q22 or the proximal region of q31. Using the same set of cell lines, we have also examined the location of another chromosome 7 marker PGY1. The data show that PGY1 is located in the region 7cen----q22, a position very different from its previous assignment.  相似文献   

9.
A comparative map was made of chicken chromosome 13 (GGA13) with a part of human chromosome 5 (HSA5). Microsatellite markers specific for GGA13 were used to screen the Wageningen chicken bacterial artificial chromosome (BAC) library. Selected BAC clones were end sequenced and 57 sequence tag site (STS) markers were designed for contig building. In total, 204 BAC clones were identified which resulted in a coverage of about 20% of GGA13. Identification of genes was performed by a bi-directional approach. The first approach starting with sequencing mapped chicken BAC subclones, where sequences were used to identify orthologous genes in human and mouse by a basic local alignment search tool (BLAST) database search. The second approach started with the identification of chicken orthologues of human genes in the HSA5q23-35 region. The chicken orthologous genes were subsequently mapped by fluorescent in situ hybridisation (FISH) and/or single neucleotide polymorphism typing. The total number of genes mapped on GGA13 is increased from 14 to a total of 20 genes. Genes mapped on GGA13 have their orthologues on HSA5q23-5q35 in human and on Mmu11, Mmu13 and Mmu18 in mouse.  相似文献   

10.
Restriction fragment length polymorphisms (RFLPs) detected using cDNA probes for conserved genes provide an important set of markers that anchor or link syntenic groups in a range of divergent mammalian species. DNA probes from sheep, cattle, pig, human and mouse were screened against sheep DNA samples and 24 new RFLP markers for sheep were identified. Among the loci tested, 22 had a homologue that has been mapped in humans. An RFLP for fibronectin (FN1) was linked to α-inhibin (INHA) at a distance of 5cM. The FN1 locus has been assigned to sheep chromosome 2q41–q44 and linkage between FN1 and INHA assigns INHA to the same chromosome in sheep. In addition to the new loci reported here, 28 RFLPs have been published previously by this group and these are collated together with RFLPs published from other laboratories. RFLPs have been reported for 86 loci in sheep. Fifty-four loci have been mapped to 16 different chromosomes.  相似文献   

11.
Comparative mapping between the human and the mouse genomes allows characterization of linkage groups that have been conserved over evolution. In this study, genes previously localized to adjacent regions of human chromosome 1 were mapped to discrete regions on distal mouse chromosomes 1 and 3 using an interspecific cross. Linkage analysis in mouse defined two groups in which the gene order appears to be the same as that in humans: 15 genes localized between human chromosome 1q21 and 1q32 were found to span 29.5 cM on distal mouse chromosome 1; 6 genes localized between human chromosome 1q21 and 1p22 spanned 15.6 cM on distal mouse chromosome 3. These data suggest that gene order within large chromosome segments may remain stable over long periods of evolution and that the position of the centromere may reflect a late event in the evolution of higher eukaryotic organisms. These studies provide a model for examination of specific evolutionary events.  相似文献   

12.
13.
Interleukin 7 (IL7) is a cytokine that has many immunological functions, including regulation of hematopoiesis and peripheral lymphocytes. cDNA and a genomic DNA segment containing the porcine IL7 gene were isolated and sequenced, showing that porcine IL7 consists of 176 amino acids and that its gene spans over about 13 kb of genomic DNA. Porcine IL7 has 85% and 73% homology with human IL7 in terms of the nucleotide and amino acid sequences, respectively. Whereas the murine IL7 gene does not have an exon corresponding to human exon 5 (Lupton et al., 1990), the porcine IL7 gene was found to contain the same exon-intron structure as the human gene. These findings, together with the upstream structure of the cDNA elucidated in the present study, indicate that the relationship between swine and human IL7 is closer than that between mouse and human IL7. The IL7 gene was mapped to swine chromosome 4q11-->q13 by fluorescence in situ hybridization and, using a radiation hybrid panel, was localized between microsatellite markers Sw1336 and Sw1073 on the same chromosome.  相似文献   

14.
We present data suggesting that corticosteroid-binding globulin (CBG) may be the causal gene of a previously identified quantitative trait locus (QTL) associated with cortisol levels, fat, and muscle content in a pig intercross. Because Cbg in human and mouse maps in the region orthologous to the pig region containing this QTL, we considered Cbg as an interesting positional candidate gene because CBG plays a major role in cortisol bioavailability. Firstly, we cloned pig Cbg from a bacterial artificial chromosome library and showed by fluorescent in situ hybridization and radiation hybrid mapping that it maps on 7q26 at the peak of the QTL interval. Secondly, we detected in a subset of the pig intercross progeny a highly significant genetic linkage between CBG plasma binding capacity values and the chromosome 7 markers flanking the cortisol-associated QTL. In this population, CBG capacity is correlated positively to fat and negatively to muscle content. Thirdly, CBG capacity was three times higher in Meishan compared with Large White parental breeds and a 7-fold difference was found in Cbg mRNA expression between the two breeds. Overall, the data accumulated in this study point to Cbg gene as a key regulator of cortisol levels and obesity susceptibility.  相似文献   

15.
A panel of somatic cell hybrid cell lines containing different parts of human chromosome 20 and fluorescence in situ hybridization have been used to physically localize markers to human chromosome 20. Through these complementary approaches and genetic linkage analysis, D20S16, which is closely linked to the maturity onset diabetes of the young (MODY) locus, was mapped to band 20q12 --> q13.1. The gene for growth hormone-releasing factor (GHRF) was physically mapped and reassigned to 20q11, suggesting that GHRF plays no direct role in MODY. In addition, the genes for the chromosome 20-linked glycogen phosphorylase (GYPB) and the bone morphogenetic protein (BMP2A) have been assigned to chromosome 20p, and the interleukin-6-dependent DNA-binding protein (TCF5) has been assigned to 20q12 --> q13 by hybridization to genomic DNA from the panel of somatic cell hybrid cell lines. These approaches are useful for rapid localization of candidate genes for MODY and other DNA markers mapped to chromosome 20.  相似文献   

16.
Segments of the long arm of human chromosome 21 are conserved, centromere to telomere, in mouse chromosomes 16, 17, and 10. There have been 28 genes identified in human chromosome 21 between TMPRSS2, whose orthologue is the most distal gene mapped to mouse chromosome 16, and PDXK, whose orthologue is the most proximal gene mapped to mouse chromosome 10. Only 6 of these 28 genes have been mapped in mouse, and all are located on chromosome 17. To better define the chromosome 17 segment and the 16 to 17 transition, we used a combination of mouse radiation hybrid panel mapping and physical mapping by mouse: human genomic sequence comparison. We have determined the mouse chromosomal location of an additional 12 genes, predicted the location of 7 more,and defined the endpoints of the mouse chromosome 17 region. The mouse chromosome 16/chromosome 17 evolutionary breakpoint is between human genes ZNF295 and UMODL1, showing there are seven genes in the chromosome 16 segment distal to Tmprss2. The chromosome 17/chromosome 10 breakpoint seems to have involved a duplication of the gene PDXK, which on chromosome 21 lies immediately distal to the KIAA0179 gene. These data suggest that there may be as few as 21 functional genes in the mouse chromosome 17 segment. This information is important for defining existing and constructing more complete mouse models of Down syndrome.  相似文献   

17.
XU, WEIZHEN, DANIELLE R REED, YUAN DING AND R ARLEN PRICE. Absence of linkage between human obesity and the mouse agouti homologous region (20q11.2) or other markers spanning chromosome 20q. Obes Res. Mutant alleles of the agouti gene cause obesity in the mouse and the homologous gene in humans has been mapped to chromosome 20q11.2. An allelic variant of the agouti gene could account for obesity in humans and we tested this hypothesis by genotyping 210 sibling pairs from 45 families segregating an obesity phenotype. Using sibling pair linear regression analysis, evidence for linkage between obesity and markers flanking the agouti locus and other markers spanning chromosome 20q was assessed. We found no correlation between identity-by-descent at these markers and obesity differences within pairs. In the mouse, obesity caused by mutations of the agouti gene develops later in life, so a subset of families with adult-onset obesity were also tested for linkage, with negative results. Although it is not possible to exclude alleles of the agouti gene as a contributor to obesity in humans, the absence of positive linkage in this study suggests that either the agouti gene has small effects or the allele frequency is low.  相似文献   

18.
We have mapped and determined the gene order of five cloned genes in the vicinity of the murine host resistance gene Bcg on mouse chromosome 1. For this, we have used a RFLP-type analysis in panels of 43 recombinant inbred strains, 3 congenic mouse strains, and 186 segregating backcross progeny derived from inbred strains of Bcgr and Bcgs genotypes. The Bcg alleles of segregating animals were established by in vivo infection with Mycobacterium bovis (Bacillus Calmette-Guérin) strain Montreal. Genomic DNA prepared from progenitor mouse strains was isolated, digested with restriction endonucleases, and analyzed by Southern blotting to identify strain-specific RFLP for each DNA marker tested. Among a number of DNA markers tested, Len2, Fn, Vil, Alpi, and Achrg were found to co-segregate with Bcg in mouse strains congenic for this locus. Detailed segregation analysis of the five markers and Bcg showed that Vil was extremely close to Bcg with no recombinant identified, whereas Fn and Len2 were located 4.5 and 9 cM proximal of Bcg, respectively. Alpi and Achrg mapped 5 and 5.5 cM distal from Bcg, respectively. Pedigree analysis in the recombinant inbred strains and backcross animals indicated the gene order: centromere-Len2-Fn-Vil,Bcg-Alpi-Achrg. The tightly linked Vil marker can now be used as an entry point in recombinant genomic DNA libraries to clone sequences overlapping Bcg. This group of five genes flanking Bcg on mouse chromosome 1 is precisely conserved on the telomeric end of the long arm of human chromosome 2q. Our results suggest that a likely location for a putative human homologue to the murine host resistance gene Bcg is the long arm of human chromosome 2 (2q32-qter).  相似文献   

19.
Comparative anchor tagged sequences (CATS) from human Chromosome 5 (HSA5) were used as PCR primers to produce molecular markers for synteny mapping in the horse. Primer sets for 21 genes yielded eight horse-specific markers, which were mapped with the UC Davis horse–mouse somatic cell hybrid panel into two synteny groups: UCD14 and UCD21. These data, in conjunction with earlier human chromosome painting studies of the horse karyotype and synteny mapping of horse microsatellite markers physically mapped by FISH, confirm the assignment of UCD21 to ECA21 and suggest that UCD14 is located on ECA14. In addition, our results can be used to substantiate previously published data which indicate that ECA21 contains material orthologous to HSA5p and HSA5q, and to propose an approximate region for an evolutionary chromosomal rearrangement event. Received: 1 February 1999 / Accepted: 12 July 1999  相似文献   

20.
Subtelomeric regions of human chromosomes are the sites of increased meiotic recombination and have a male-to-female recombination ratio that is higher than elsewhere in the genome. We isolated two novel, polymorphic CA repeat markers from the distal part of the immunoglobulin heavy chain gene cluster, approximately 90 and 200 kb from the telomere of chromosome 14q. The 14q telomere was unambiguously located by physical mapping of telomeric YACs andBal31 exonuclease digestion of genomic DNA. We then constructed haplotypes using genotype data from these markers and data from sCAW1 (D14S826) for use as a highly polymorphic genetic marker. Linkage analysis using the 40 pedigree CEPH reference panel and genotype data from these and other loci physically mapped to the terminal 1.5 Mb of chromosome 14q revealed an apparent increase in meiotic recombination within this region, relative to the average rate for the genome. Further, we found that recombination was higher in females than in males, indicating that the subtelomeric region of 14q differs from other human subtelomeric regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号