首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The origins of liver progenitor cells have been extensively studied, but evidence on the origin of pancreatic precursor cells is currently limited. Pancreatic and duodenal homeobox gene 1 (Pdx1) is one of the earliest known markers for the pancreas. A transgenic mouse line expressing green fluorescent protein (GFP) under the control of the Pdx1 promoter showed that Pdx1/GFP expression was first observed in the mid-region of the anterior intestinal portal (AIP) lip at embryonic day (E) 8.5 at the 5-6 somite stage (ss). The liver progenitors were confirmed to originate from separate domains at the lateral endoderm and the inner part of the medial AIP as previously reported (Tremblay and Zaret, 2005), which turned out to lie caudally to the Pdx1/GFP-expressing domain. To confirm if the early Pdx1/GFP-positive cells give rise to the pancreatic bud, we labeled the cells on the lip of the AIP using the carbocyanine dye CM-DiI and traced their fates in 1-4 ss, 5-6 ss and 7-9 ss E8.5 embryos using an ex utero whole embryo culture method. At 1 ss, the ventral pancreas progenitors were observed in the lateral endoderm, not yet being segregated from the liver or gut progenitors. Cells that contributed solely to the ventral pancreas first appeared at the AIP lip from 5 ss. At 5-6 ss, cells from the medial of the AIP lip contributed to the ventral pancreas. The pancreas fate region become narrower as development progresses. At 7-9 ss, the cells contributing to the ventral pancreas resided in a narrow region of the AIP lip. From 5 ss, the right flanking region contributes to the posterior gut, and the left flanking region contributes to the anterior gut. Dorsal pancreatic progenitors originate from the dorsal endoderm at the 3-6 somite level at 7-9 ss, though they have not yet diverged from the dorsal gut progenitors at this stage.  相似文献   

2.
R P Harvey  D A Melton 《Cell》1988,53(5):687-697
The structural similarity between Drosophila and vertebrate homeobox genes begs the question of whether the vertebrate gene products affect cell fate and pattern formation. To study the function of the Xenopus homeobox protein, Xhox-1A, we microinjected fertilized Xenopus eggs with an excess of synthetic Xhox-RNA and assayed for effects on development. The predominant phenotype is a disturbance in somite formation. When embryos are injected with Xhox-1A mRNA, but not with control mRNAs, morphogenesis of somites occurs chaotically and individual segments are lost. Histological staining, in situ hybridization, and immunohistochemistry indicate that the disorganized somitic tissue has differentiated into muscle cells. Overall, these results suggest that correct regulation of the Xhox-1A gene may be important for the normal development of the segmented somite pattern in early embryos. Moreover, the inferred role of Xhox-1A in somite formation indicates that there may be molecular parallels between mechanisms of segmentation in flies and vertebrates.  相似文献   

3.
Dorsal ventral polarity and pattern formation in the Drosophila embryo   总被引:3,自引:0,他引:3  
The establishment of polarity along the dorsal-ventral axis of the Drosophila embryo requires the graded distribution of the dorsal morphogen. Several maternal genes are responsible for the formation of the gradient and their products act in an ordered series of events that begins during oogenesis and involves two different cell types, the oocyte and the follicle cells. The last step in the series results in selective nuclear localization of dorsal proteins, dorsal is thought to regulate the expression of zygotic genes in a concentration dependent way. The zygotic genes determine cell fates in specific regions of the embryo and direct other genes involved in the processes of differentiation.  相似文献   

4.
Calcium signaling is known to be associated with cytokinesis; however, the detailed spatio-temporal pattern of calcium dynamics has remained unclear. We have studied changes of intracellular free calcium in cleavage-stage Xenopus embryos using fluorescent calcium indicator dyes, mainly Calcium Green-1. Cleavage formation was followed by calcium transients that localized to cleavage furrows and propagated along the furrows as calcium waves. The calcium transients at the cleavage furrows were observed at each cleavage furrow at least until blastula stage. The velocity of the calcium waves at the first cleavage furrow was approximately 3 microns/s, which was much slower than that associated with fertilization/egg activation. These calcium waves traveled only along the cleavage furrows and not in the direction orthogonal to the furrows. These observations imply that there exists an intracellular calcium-releasing activity specifically associated with cleavage furrows. The calcium waves occurred in the absence of extracellular calcium and were inhibited in embryos injected with heparin an inositol 1,4,5-trisphosphate (InsP3) receptor antagonist. These results suggest that InsP3 receptor-mediated calcium mobilization plays an essential role in calcium wave formation at the cleavage furrows.  相似文献   

5.
6.
Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells.  相似文献   

7.
A M Burgess 《Acta anatomica》1988,132(4):331-334
Somite formation involves a reorientation of the cells of the paraxial mesoderm but the underlying mechanism of this movement has never been demonstrated. The present investigation shows bundles of myofibril-like material in the ventrocranial corners of some of the paraxial mesoderm cells of Xenopus prior to reorientation and consequent somite formation.  相似文献   

8.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

9.
Limitations to the in vivo study of human nervous system development make it necessary to design an in vitro model to evaluate the in vivo effects of surrounding tissues on neurogenesis and regional identity of the human neural plate. Rostral neural progenitors (NPs) were initially generated from adherent human embryonic stem cells (hESCs) in a defined condition and characterized. Then, to find the role of somites (S) and notochords (N) in rostro-caudal (RC) and dorso-ventral (DV) patterning of neuronal cells, NPs were co-cultured with microencapsulated chicken S or N in alginate beads. In this study, N induced more neurogenesis as evaluated by expression of TUJ1 and MAP2-positive cells. Additionally, N induced spinal cord ventral brachiothoracic identity as well as NPs proliferation. We observed a synergic effect on motoneuron induction when S and N were used together. Moreover, S induced hindbrain identity in differentiated neuronal cells from NPs. These results indicate that highly enriched NPs can be generated in an adherent and defined system from hESCs. Moreover, S and N tissues highly influenced neuronal differentiation in point of proliferation, neurogenesis, and RC and DV regional identity. These results indicate a very simple and efficient protocol to mimic in vivo events of human neural development in vitro which is important in the context of developmental neuroscience and cellular replacement therapies.  相似文献   

10.
Notochordless Xenopus embryos were produced by u.v. irradiation of the uncleaved fertilized egg. The spinal cords were examined using intermediate filament staining for glial cells, retrograde HRP staining for neuronal morphology and an anti-glycinergic antibody to reveal commissural cells and axons. The floorplate cells of the normal cord appear to be absent and their position along the ventral midline of the cord is occupied by motor neurones, Kolmer-Agduhr cells, radial glial cells and a ventrally placed marginal zone containing the longitudinal axons. Motor neurone number is reduced to 15% of control values, and the sensory extramedullary cell number is increased twentyfold. Commissural axons are still able to cross the ventral cord but do so at abnormal angles and some commissural axons continue to grow circumferentially up the contralateral side of the cord rather than turning to grow longitudinally. Extracellular electrophysiological recordings from motor axons reveal that the normal alternation of locomotor activity on the left and right side of the embryo is lost in notochordless animals. These results suggest that the notochord and/or the normal floor plate structure are important for the development of the laterality of spinal cord connections and may influence motor neurone proliferation or differentiation.  相似文献   

11.
Differentiation in vitro of mouse embryos to the stage of early somite   总被引:3,自引:0,他引:3  
Mouse blastocysts continuously differentiate in vitro to the early somite stage with reconstituted rat tail collagen as the substrate for the attachment. In order for this to occur, it appears that two differentiation barriers must be overcome. The first, the formation of egg cylinders from the inner cell mass, can be overcome by incubating embryos in heat-inactivated fetal calf serum. The second, the formation of the early somite from the presomite stage, can be overcome by replacing fetal calf serum with human cord serum.Mouse blastocysts were initially incubated with calf serum in Eagle's minimum essential medium. After shedding the zona pellucida, the denuded blastocysts lay flat on the surface of the collagen. Soon thereafter, trophoblastic cells invaded the underlying collagen leaving the rounded inner cell mass protruding from the surface of the collagen. By replacing calf serum in the medium with fetal calf serum the inner cell mass differentiated into endoderm and ectoderm to form an egg cylinder.The egg cylinder rapidly became elongated and formed extraembryonic and embryonic regions. However, the embryonic region shrank from this point on in the fetal calf serum, and the resulting yolk sac formation did not contain the embryo proper. When fetal calf serum was replaced with human cord serum at the end of the egg cylinder stage (equivalent to embryos of about 7.5 days gestation) neural tissue, cardiac chambers, and somites were formed.  相似文献   

12.
Centrosomes isolated from various sources, including human cells, have the capacity to induce parthenogenetic development when injected into unfertilized amphibian eggs. We recently isolated calf thymus centrosomes and showed that they differ structurally and functionally from previously isolated centrosomes of KE37 cells, in that the two centrioles in calf thymocytes are linearly associated by their proximal ends through a mass of electron dense material and nucleate few microtubules from their distal ends (Komesli, S., F. Tournier, M. Paintrand, R. Margolis, D. Job, and M. Bornens. 1989. J. Cell Biol. 109:2869-2878). We report here that these centrosomes are also unable to induce egg cleavage and examine the various possibilities which could account for this lack of competence. The results show that: (a) the kinetics of microtubule assembly on calf thymus centrosomes in Xenopus extracts are comparable to those of KE37 centrosomes; (b) centrosomes isolated from thymus of calves raised under controlled conditions (without anabolic agents) also lack competence; (c) centrosomes isolated from bovine cells of other tissues are competent; (d) centrosomes isolated from thymus of three other species (rat, mouse, and human) are competent. Since the lack of activity of calf thymus centrosomes apparently was not linked to species or tissue differences, we compared the ultrastructure of the centrosomes in the various centrosome preparations. The results show a strict correlation between the linear arrangement of centrioles and the lack of activity of the centrosomes. They suggest that the centrosome cycle can be blocked when the centrioles are prevented from separating into a nonlinear configuration, a step which might be critical for the initiation of procentriole budding. They also indicate that the centrosome may be involved in the G0-G1 transition.  相似文献   

13.
Oda-Ishii I  Ishii Y  Mikawa T 《PloS one》2010,5(10):e13689

Background

The notochord is a signaling center required for the patterning of the vertebrate embryic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood.

Methodology/Principal Findings

Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete.

Conclusions/Significance

Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.  相似文献   

14.
Mouse spleen cells not adhering to the plastic surface and B-cells isolated from them were treated with B. pertussis toxin in vitro, washed and injected into recipients (allogeneic, syngeneic, intact or lethally irradiated) whose immune response to sheep red blood cells was then evaluated by Jerne's method. Treatment with B. pertussis toxin was shown to induce the development of immunosuppressive activity in intact spleen cells and in B-cells, to abolish the activity of memory B-cells and to enhance the suppressor activity of autoimmune mice. Supernatants obtained after autoimmune mice. Supernatants obtained after the 18- to 24-hour cultivation of spleen cells, previously treated with B. pertussis toxin for 60 minutes, suppressed the reaction of blast transformation of spleen cells to Con A and lipopolysaccharide and induced the appearance of immunosuppressive activity in intact spleen cells. The suppressing effect of the cells studied in this investigation may be linked with the ability of B. pertussis cells to stimulate the synthesis of cAMP, prostaglandins E and/or suppressor factors.  相似文献   

15.
16.
An extracellular signaling molecule acts on several types of cells, evoking characteristic and different responses depending on intrinsic factors in the signal-receiving cells. In ascidian embryos, notochord and mesenchyme are induced in the anterior and posterior margins, respectively, of the vegetal hemisphere by the same FGF signal emanating from endoderm precursors. The difference in the responsiveness depends on the inheritance of the posterior-vegetal egg cytoplasm. We show that macho-1, first identified as a localized muscle determinant, is also required for mesenchyme induction, and that it plays a role in making the cell response differ between notochord and mesenchyme induction. A zygotic event involving snail expression downstream of maternal macho-1 mediates the suppression of notochord induction in mesenchyme precursors.  相似文献   

17.
《Developmental biology》1967,15(3):193-205
Nine-day mouse somitic mesenchyme normally responds trans-filter to 9-day ventral spinal cord by forming a perichondrium-limited “whole” nodule at a distance from the tissue-filter interface. Chick notochord usually induces a “partial” nodule in which cells in association with the filter are oriented to it. Under proper experimental conditions interconversion of nodule responses is possible—ventral spinal cord yielding “partial” nodules; notochord, “whole” nodules. Conversion of the notochord response occurs under conditions attenuating its inductive effect, while ventral spinal cord induces “partial” nodules under conditions presumably enhancing the availability of inductive substance(s). The notochord does not require a surface for induction of chondrogenesis in vitro, although in vivo the presence of a surface may play a significant morphogenetic role. Notochord appears to be a more “active” inducer than ventral spinal cord.  相似文献   

18.
Liu JT  Yang Y  Guo XG  Chen M  Ding HZ  Chen YL  Wang MR 《动物学研究》2011,32(5):485-491
越来越多的证据表明转录激活因子4(atf4)是一个与胚胎发育相关的基因.该文研究了非洲爪蛙atf4在胚胎发育过程中的表达和功能.atf4特异性地表达在非洲爪蛙胚胎的脑部、眼睛、血岛、原肾、肝脏、胰腺以及胃和十二指肠的部分细胞.在非洲爪蛙胚胎的动物极半球过表达适量(不影响胚胎整体形态发生的剂量)的atf4,对神经上皮细胞中sox3的表达无明显影响,也不引起细胞凋亡;但是对原始神经元的标记基因以及预定形成前脑、中脑、视网膜和晶状体的前体细胞的标记基因表达都有不同程度的抑制,最终导致无晶状体小眼的表型.该研究结果首次提示对正常的早期神经发育及眼睛形成而言,atf4的活性需受到严格的调控.  相似文献   

19.
We have investigated the interactions between the cells of the rostral and caudal halves of the chick somite by carrying out grafting experiments. The rostral half-sclerotome was identified by its ability to support axon outgrowth and neural crest cell migration, and the caudal half by the binding of peanut agglutinin and the absence of motor axons and neural crest cells. Using the chick-quail chimaera technique we also studied the fate of each half-somite. It was found that when half-somites are placed adjacent to one another, their interactions obey a precise rule: sclerotome cells from like halves mix with each other, while those from unlike halves do not; when cells from unlike halves are adjacent to one another, a border is formed. Grafting quail half-somites into chicks showed that the fates of the rostral and caudal sclerotome halves are similar: both give rise to bone and cartilage of the vertebral column, as well as to intervertebral connective tissue. We suggest that the rostrocaudal subdivision serves to maintain the segmental arrangement when the mesenchymal sclerotome dissociates, so that the nervous system, vasculature and possibly vertebrae are patterned correctly.  相似文献   

20.
In continuation of preceding investigations, in 184 duck embryos of the developmental stages 18-27 according to Hamburger and Hamilton (about 85-140 hours of incubation) a study was done on the occurrence of median germ cells. These cells proved to be present in proportionally small numbers in the stages 19-26. Their numbers were independent of the sex of the embryos and did not show any relations whatever with changes in the numbers or distribution of the intragonadal germ cells. The temporary occurrence of the median germ cells could be shown to be due to the movement of the gonadal primordia from the splanchnopleure of the yolk sac to the ventro-medial surface of the mesonephros, and it was argued that ultimately all these germ cells reach the right of left gonad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号