首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A family of unstable mutations at the cut locus in Drosophila melanogaster was obtained under the conditions of hybrid dysgenesis (Gerasimova 1981, 1982). The in situ hybridization experiments have shown that, in the original unstable ct MR2 mutation, the 7B region of the X chromosome (where cut is located) contains a mobile dispersed genetic element, mdg4. All other unstable ct mutations derived from ct MR2 including visible and lethal alleles and unstable ct + reversions, also contain mdg4 in the 7B region. The X chromosomes of the parent strain (wild type) do not contain mdg4 at all. All stable revertants derived from ct MR2, from other unstable ct mutations, or from ct lethals lost mdg4 from the 7B region. The ct MR2 X chromosome does not contain P-elements, although a few copies are present in the autosomes. The instability of the ct MR2./ct MR2 strain remained at a high level for 50 generations (1.5 years) and then rapidly decreased. A new cross with an MRh12/Cy strain (originally used for dysgenesis induction and containing a number of P-elements) increased the instability to a level exceeding the original one. The data strongly suggest that unstable ct mutations in our system are induced by transpositions of mdg4, possibly activated by P-elements.  相似文献   

2.
Summary Simultaneous multiple transpositions and longterm genetic instability have been described in the ct MR2 strain of Drosophila melanogaster and its derivatives. This strain originated from a cross that was dysgenic in the P-M system. While spontaneous instability declined over 2 years, instability has been reactivated by backcross to the progenitor P element bearing strain MRh12/Cy. We show here using germline transformation that active P factor alone cannot mimic the effect of this cross, suggesting that MRh12/Cy contains some other activator. In addition, we have observed that ct + exceptional progeny arise in the F1 s well as the F2 generations. Molecular analysis of X chromosomes from some ct + progeny indicates that phenotypic reversion of the ct mutation can arise through two unrelated mechanisms.  相似文献   

3.
Summary This is a detailed study of the reversions of the ct MR2 allele putatively carrying á mobile element (MR-transposon) in the cut locus. Stable, unstable and superunstable revertants have been identified. Besides, a series of multiple unstable visible and lethal ct mutations derived from the ct MR2 allele have been obtained. They are shown to include supermutable alleles. The results suggest that the MR-transposon is connected with at least three functions: excision; change of orientation; and change of position within the cut locus, these functions being disturbed in different ways in different unstable ct + and ct alleles. In some cases the mutant transitions are somehow strongly stimulated leading to superinstability, reaching the rate of 0.5.  相似文献   

4.
We have cloned from the Oregon R strain of Drosophila melanogaster a 240 kb segment of DNA that contains the cut (ct) locus, and characterized the region for the presence of repetitive elements. Within this region at least five copies of the suffix element were detected, as well as several putatively novel mobile elements. A number of mutations obtained from the unstable ct MR2 strain and its derivatives were mapped within the cut locus. Comparison between parental and daughter strains indicates that frequently two or more independent transposition events involving the cut locus occur simultaneously within a single germ cell, thus providing a molecular basis for the transposition explosion phenomenon.  相似文献   

5.
The segment of the locus cut containing the mobile genetic element mdg4 (gypsy) insertions which induce unstable ctMR2 and ctMRpN10 mutations has been cloned. Both mutations depend on the insertion of mdg4 into the same sequence, which coincides with that in ct6 allele. The ctMRpN10 mutation differs from ctMR2 by additional insertion of a novel mobile element jockey into mdg4. Jockey is 2.8 kb long, represented by ˜2–100 copies per genome, very homogeneous and lacks long terminal repeats (LTRs). The excision of mdg4 takes place in stable ct+ reversions. On the other hand, a complete single LTR is retained in the case of unstable ct reversions characterized by a high level of reverse directed transpositions of mdg4 into the locus cut. The LTR serves as a guide for reinsertion of mdg4 itself or mdg4 with jockey into the same site of the genome. A possible mechanism of transposition memory (homologous recombination with extrachromosomal circular DNA) is discussed.  相似文献   

6.
Whirler (wi) mice display profound deafness and a head-tossing and circling phenotype, showing an autosomal recessive mode of inheritance. The wi mutation has been shown to map close to the Orm gene cluster on mouse Chromosome (Chr) 4. We have, therefore, investigated the Orm loci as candidates for the whirler gene. Detailed mapping and analysis of the Orm gene cluster in both normal and whirler mice indicates the presence of a <48-kb deletion in whirler mice that disrupts the Orm1 locus. The Orm1 locus is also deleted in the CE/J mouse strain, and we discuss the candidature of Orm1 for the whirler gene. Received: 22 June 1999 / Accepted: 17 September 1999  相似文献   

7.
Larkan NJ  Smith SE  Barker SJ 《Mycorrhiza》2007,17(4):311-318
Our research aims to investigate the molecular communication between land plants and arbuscular mycorrhizal (AM) fungi in the establishment of symbiosis. We have identified a mutation in the facultative AM host tomato, which we named rmc. Plants that are homozygous for rmc no longer host most AM fungi. The mutation also affects the interaction of tomato with root knot nematode and Fusarium wilt. However, the function/s encoded by the intact Rmc locus is/are unknown. To clone and sequence the gene or genes that comprise the Rmc locus, we have initiated a positional cloning project. In this paper, we report the construction of mapping populations and use of molecular markers from the published genome map to identify the location of Rmc on tomato chromosome 8. Nucleotide binding site-leucine rich repeat resistance genes, reported to reside in the same region of that chromosome, provided insufficient differences to develop cleaved amplified polymorphic sequence markers. Therefore, we were unable to map these sequences in relation to rmc. Our results potentiate future work to identify the Rmc function and to determine the genetic basis for the multiple plant-microbe interaction functions that the rmc mutation has defined.  相似文献   

8.
The importance of the CDK4 protein in human cancer first became evident following the identification of a germ line mutation in the Cdk4 locus that predisposes humans to melanoma. This mutation results in substitution of arginine with cysteine at position 24 (R24C). In an earlier study, we introduced the R24C mutation into the Cdk4 locus of mice using Cre-loxP-mediated "knock-in" technology and observed a very low incidence of spontaneous melanomas in Cdk4R24C/R24C mice. This suggested that additional oncogenic mutations might be required for development of melanomas. Here we report an increased incidence of spontaneous cutaneous melanoma in mice expressing the oncogene HRAS(G12V) in melanocytes on a Cdk4R24C background. Treatment of Tyr-HRas:Cdk4R24C/R24C mice with the carcinogen, DMBA/TPA resulted in a further increase in the number of nevi and melanomas developed when compared with Tyr-HRas:Cdk4+/+ mice. In summary, in Tyr-HRas:Cdk4R24C/R24C mice, we observed that activated CDK4 cooperates with the oncogenic HRAS(G12V)protein to increase the susceptibility of melanoma development in vivo.  相似文献   

9.
TheLpslocus on mouse chromosome 4 controls host responsiveness to lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria. The C3H/HeJ inbred mouse strain is characterized by a mutantLpsallele (Lpsd) that renders it hyporesponsive to LPS and naturally tolerant of its lethal effects. To identify theLpsgene by a positional cloning strategy, we have generated a high-resolution linkage map of the chromosomal region surrounding this locus. We have analyzed a total of 1604 backcross mice from a preexisting interspecific backcross panel of 259 (Mus spretus× C57BL/6J)F1 × C57BL/6J and two novel panels of 597 (DBA/2J × C3H/HeJ)F1 × C3H/HeJ and 748 (C57BL/6J × C3H/HeJ)F1 × C3H/HeJ segregating atLps.A total of 50 DNA markers have been mapped in a 11.8-cM span overlapping theLpslocus. This positions theLpslocus within a 1.1-cM interval, flanked proximally by a large cluster of markers, including three known genes (Cd30l, Hxb,andAmbp), and distally by two microsatellite markers (D4Mit7/D4Mit178). The localization of theLpslocus is several centimorgans proximal to that previously assigned.  相似文献   

10.
11.
We have identified AFLP markers tightly linked to the locus conferring resistance to the leaf rust Melampsora larici-populina in Populus. The study was carried out using a hybrid progeny derived from an inter-specific, controlled cross between a resistant Populus deltoides female and a susceptible P. nigra male. The segregation ratio of resistant to susceptible plants suggested that a single, dominant locus defined this resistance. This locus, which we have designated Melampsora resistance (Mer), confers resistance against E1, E2, and E3, three different races of Melampsora larici-populina. In order to identify molecular markers linked to the Mer locus we decided to combine two different techniques: (1) the high-density marker technology, AFLP, which allows the analysis of thousands of markers in a relatively short time, and (2) the Bulked Segregant Analysis (BSA), a method which facilitates the identification of markers that are tightly linked to the locus of interest. We analyzed approximately 11,500 selectively amplified DNA fragments using 144 primer combinations and identified three markers tightly linked to the Mer locus. The markers can be useful in current breeding programs and are the basis for future cloning of the resistance gene.  相似文献   

12.
Summary Unstable mutations were generated at the cut locus by the MR-h12 factor which induces male recombination. The unstable allele ct MR2, containing the MR-transposon in the cut locus is a very powerful mutator producing a number of different viable and lethal mutations both in the cut locus and outside it.I describe several types of mutations: stable reversion to wild type, which were sometimes associated with the appearance of unstable mutations in other loci; of stable deficiencies at the cut locus (lethals); new unstable mutations at different loci with the ct MR2 allele conserved; new unstable cut alleles with a phenotype other than that of ct MR2. The possible mechanisms of these mutational events are discussed. The genetic system constructed in the present work affords an opportunity for molecular studies of the cut locus and the MR-transposon, as a sequence from the cut locus has recently been cloned (Tchurikov et al. 1981).  相似文献   

13.
Summary Several different transposition events occur simultaneously in one and the same germ cell, as we have found by analyzing different genetic systems in Drosophila melanogaster. (i) In unstable ct MR2 strains, stable reversions to ct + and changes in the type of ct mutation, which depend on an excision or transposition of the mobile element mdg4 (Gerasimova 1981; Gerasimova et al. 1984), are frequently accompanied by the appearance of novel mutations in different loci of the X chromosome. Some of these (sn, w, g) seem to be induced by the P-element and copia. (ii) A stable ct MR2 reversion to the wild type frequently coexists with an insertion of one to five copies of the P-element in the X-chromosome. Thus, the number of independent transposition events registered by genetic analysis and in situ hybridization may be as great as six. (iii) In two strains with double unstable mutations (cm, ct, and ct, r), double reversions to the wild type occurred at a high rate (80%–97% of total revertants). They frequently coexisted with novel strain-specific mutations. (iv) The stable strain ct 6 g2is destabilized by crossing with the MRh12/Cy strain (which contains a number of P-element copies). Both mutations begin to revert to the wild type. Of the revertants 50% have double reversions. Our experiments revealed a high specificity of insertion sites depending on the nature of transposon and the strain genotype. A possible role played by the burst of transposition in the evolution and possible mechanisms of transposition specificity are discussed.  相似文献   

14.
15.
Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 1, and pvr1 2. These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.  相似文献   

16.
The goal of this study was to determine the effect of the mouse severe combined immunodeficiency (scid) mutation on the rate of meiotic recombination, by standard backcross linkage analysis. For this purpose, we examined four crosses that involved F1 hybrid animals heterozygous for the strain C57BL/6 and BALB/c genomes. In one set of reciprocal crosses, F1 animals were homozygous scid/scid, and in a second set of reciprocal crosses, F1 mice were homozygous wild-type (+/+) at the scid locus. Backcross progeny were typed for recombination between selected genetic markers on mouse Chromosomes (Chrs) 1, 4, 6, 7, 9, 15, and 17. Although some differences in recombination were observed over some intervals, the expression of the SCID phenotype did not appear to have a major or consistent effect on meiotic recombination. Received: 4 October 1995 / Accepted: 2 April 1996  相似文献   

17.
C57Bl/6 mice reproducibly prefer to ingest more 10% ethanol in a two-bottle choice paradigm than do DBA/2J mice. In this paper we report the identification of two new sex-specific alcohol preference (Alcp) loci. Melo and associates (1996) identified two loci: Alcp1, a male-specific locus on Chromosome (Chr) 2, and Alcp2, a female- and cross-specific locus on Chr 11. We have additionally identified Alcp3, a male-specific locus on Chr 3, and Alcp4, a female-specific locus on Chr 1. We have also performed a statistical analysis to exclude the possibility of undiscovered major alcohol preference loci that are not sex-specific in our backcross paradigm. Our results indicate that alcohol preference in C57BL/6 mice, as measured in our backcross, is largely controlled in a sex-specific manner. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   

18.
The retinal degeneration mouse (gene symbol, rd) is an animal model for certain forms of human hereditary retinopathies. Recent findings of a nonsense mutation in the rd mouse PDE β-subunit gene (Pdeb) prompted us to investigate the chromosome locations of the mouse and human genes. We have utilized backcross analysis in mice to verify and define more precisely the location of the Pdeb locus 6.1 ± 2.3 cM distal of Mgsa on mouse chromosome 5. We have determined that the human gene (PDEB) maps to 4p16.3, very close to the Huntington disease (HD) region. Analysis of the comparative map for mice and humans shows that the mouse homologue of the HD gene will reside on chromosome 5. Linkage of the mouse Pdeb locus with other homologues in the human 4p16.3 region is maintained but gene order is not, suggesting at least three possible sites for the corresponding mouse HD gene.  相似文献   

19.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration originally described in families of Portuguese-Azorean ancestry. The hypothesis that its present world distribution could result from the spread of an original founder mutation has been raised. To test this possibility we have conducted a linkage disequilibrium study of markers segregating with the MJD1 locus in a total of 64 unrelated families of different geographical origins. Significant association was detected between the MJD1 locus and marker alleles at loci D14S280, D14S1050 and D14S81. All affected individuals, except one Chinese family, had allele 3 (237 bp) at D14S280. This finding is consistent with a founder effect in our MJD population. However, distinct haplotypes were observed in patients originating from the two Azorean islands showing the highest disease prevalence; therefore, the possible existence of more than one founder mutation can not be excluded with the markers currently available. Received: 27 February 1996 / Revised: 4 June 1996  相似文献   

20.
 The Arabidopsis tornado1 (trn1) mutation causes severe dwarfism combined with twisted growth of all organs. We present a chromosome landing strategy, using amplified restriction fragment length polymorphism (AFLP) marker technology, for the isolation of the TRN1 gene. The recessive trn1 mutation was identified in a C24 transgenic line and is located 5 cM from a T-DNA insertion. We mapped the TRN1 locus to the bottom half of chromosome 5 relative to visible and restriction fragment length polymorphism (RFLP) markers. Recombinant classes within a 3-cM region around TRN1 were used to build a high-resolution map in this region, using the AFLP technique. Approximately 300 primer combinations have been used to test about 26 000 fragments for polymorphisms. Seventeen of these AFLP markers were identified in the 3-cM region around TRN1. These markers were mapped within this region using individual recombinants. Four of these AFLP markers co-segregate with TRN1 whereas one maps at one recombinant below TRN1. We isolated and cloned three of these AFLP markers. These markers identified two yeast artificial chromosome (YAC) clones, containing the RFLP marker above and the AFLP marker below TRN1, demonstrating that these YACs span the TRN1 locus and that chromosome landing has been achieved, using an AFLP-based strategy. Received: 25 April 1996 / Accepted: 26 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号