共查询到20条相似文献,搜索用时 9 毫秒
1.
van der Pol JJ Machnik M Biselli M Portela-Klein T de Gooijer CD Tramper J Wandrey C 《Cytotechnology》1997,24(1):19-30
The monoclonal-antibody production of an immobilized hybridoma cell line cultivated in a fluidized-bed reactor was monitored
on-line for nearly 900 h. The monoclonal antibody concentration was determined by an immuno affinity-chromatography method
(ABICAP). Antibodies directed against the product, e.g. IgG, were immobilized on a micro-porous gel and packed in small columns.
After all IgG present in the sample was bound to the immobilized antibodies, unbound proteins were removed by rinsing the
column. Elution of the bound antibodies followed and the antibodies were determined by fluorescence. The analytical procedure
was automated with a robotic device to enable on-line measurements. The correlation between the on-line determined data and
antibody concentrations measured by HPLC was linear.
A sampling system was constructed, which was based on a pneumatically actuated in-line membrane valve integrated into the
circulation loop of the reactor. Separation of the cells from the sample stream was achieved by a depth filter made of glass-fibre,
situated outside the reactor. Rapid obstruction of the filter by cells or cell debris and contamination of the sample system
was avoided by intermittent rinsing of the sample system with a chemical solution. The intermittent rinsing of the filter,
which had a surface of 4.8 cm2, resulted in an operational capacity of up to 40 samples (1.0 l total sample volume). Both the sampling system and the analytical
device functioned without failure during this long-term culture.
The culture temperature was varied between 34 and 40 °C. Raising the temperature from 34 up to 37 °C resulted in a simultaneous
increase of growth and specific antibody production rate. Specific metabolic rates of glucose, lactate, glutamine and ammonium
stayed constant in this temperature range. A further enhancement of temperature up to 40 °C had a negative effect on the growth
rate, whereas the specific monoclonal antibody production rate showed a small increase. The other specific metabolic rates
also increased in the temperature range between 38 to 40 °C.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
2.
Christel Fenge Elisabeth Fraune Ruth Freitag Thomas Scheper Karl Schügerl 《Cytotechnology》1991,6(1):55-63
An automated flow injection system for on-line analysis of proteins in real fermentation fluids was developed by combining the principles of stopped-flow, merging zones flow injection analysis (FIA) with antigen-antibody reactions. IgG in the sample reacted with its corresponding antibody (a-IgG) in the reagent solution. Formation of insoluble immunocomplexes resulted in an increase of the turbidity which was determined photometrically. This system was used to monitor monoclonal antibody production in high cell density perfusion culture of hybridoma cells. Perfusion was performed with a newly developed static filtration unit equipped with hydrophilic microporous tubular membranes. Different sampling devices were tested to obtain a cell-free sample stream for on-line product anlysis of high molecular weight (e.g., monoclonal antibodies) and low molecular weight (e.g., glucose, lactate) medium components. In fermentation fluids a good correlation (coefficient: 0.996) between the FIA method and an ELISA test was demonstrated. In a high density perfusion cultivation process mAb formation was succesfully monitored on-line over a period of 400 h using a reliable sampling system. Glucose and lactate were measured over the same period of time using a commercially available automatic analyser based on immobilized enzyme technology.Abbreviations TIA
Turbidimetric immunoassay
- mAb
Monoclonal Antibody 相似文献
3.
On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. 总被引:2,自引:0,他引:2
Dielectric spectroscopy was applied to two industrial high cell density culture processes and used to determine on-line the concentration of CHO cells immobilized on macroporous microcarriers in a stirred bioreactor and in a packed-bed of disk carriers. The cell concentration predicted from the spectroscopic data was in excellent agreement with off-line cell counting data for both processes. Deviations between the two counting methods only occurred in the case of a significant decrease of the cell viability, from 93% to 64%, which induced a change of the average cell size in the culture. Results for the packed-bed process were further confirmed by the application of indirect yield models based on the measurement of glucose, lactate, and the protein of interest. Moreover, dielectric spectroscopy was used as a tool to characterize the packed-bed process. It was possible to determine both the maximum cell concentration that could be reached in the culture system, 2.0 x 10(11) cell per kg of disk carrier, and to quantify the increase of specific protein productivity induced by the production phase, from 5.14 x 10(-8) microg x cell(-1) x h(-1) to 4.24 x 10(-7) microg x cell(-1) x h(-1). 相似文献
4.
This article demonstrates the successful in situ real-time monitoring of the cell concentration of Perilla frutescens in a bioreactor by using a laser turbidimeter. It was found that turbidity measurements at 780 nm with the laser sensor were hardly affected by the red color of the anthocyanin produced by P. frutescens cells, nor by the aeration rate or agitation speed within the ranges investigated. There was an excellent linear relationship, with a correlation coefficient (r(2)) higher than 0.99, between the sensor's response and the cell concentration. The whole growth stage of the cells, i.e., lag, logarithmic, and stationary phases, in bioreactor cultivations, could be satisfactorily estimated on-line by means of the in situ turbidimeter. However, during the declining phase of the cells, an apparent deviation was observed between the on-line estimations and off-line measurements of cell concentrations by dry cell weight, while the wet cell weight could be estimated by the same turbidimeter system. We found that this deviation was caused by a decrease in the cell density due to an increase of the individual cell volume and a decrease of the cell dry weight during the declining phase. (c) 1993 John Wiley & Sons, Inc. 相似文献
5.
Chemically defined iron compounds were investigated for the development of animal protein-free cell culture media to support growth of CHO cells and production of monoclonal antibodies (mAb). Using a multivessel approach of 96-well plates, shake flasks, and bioreactors, we identified iron and its chemical partner citrate as critical components for maintenance of continuous cell growth and mAb production. The optimized iron concentration range was determined to be 0.1-0.5 mM and that for citrate 0.125-1 mM. This complete formulation is able to maintain cell growth to similar levels as those supplemented with iron compounds alone; however, mAb productivity was enhanced by 30-40% when citrate was present. The addition of sodium citrate (SC) did not affect product quality as determined by size exclusion chromatography, ion exchange chromatography, reversed phase and normal phase-HPLC. No significant changes in glucose and lactate profiles, amino acid utilization, or mAb heavy and light chain expression ratios were observed. Cellular ATP level was ~30% higher when SC was included suggesting that SC may have a role in enhancing cellular energy content. When cell lysates were analyzed by LC-MS to assess the overall cellular protein profile, we identified that in the SC-containing sample, proteins involved in ribosome formation and protein folding were upregulated, and those functions in protein degradation were downregulated. Taken together, this data demonstrated that iron and citrate combination significantly enhanced mAb production without altering product quality and suggested these compounds had a role in upregulating the protein synthetic machinery to promote protein production. 相似文献
6.
Susan Fugett Abu‐Absi LiYing Yang Patrick Thompson Canping Jiang Sunitha Kandula Bernhard Schilling Abhinav A. Shukla 《Biotechnology and bioengineering》2010,106(6):894-905
The concept of design space has been taking root as a foundation of in‐process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non‐key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product‐related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified. Biotechnol. Bioeng. 2010;106: 894–905. © 2010 Wiley Periodicals, Inc. 相似文献
7.
On-line, "real-time" monitoring of product concentration is important for mammalian cell culture fermentation. The continuous measurement of monoclonal antibodies allows for instantaneous determination of cell productivity and effective manipulation of the fermentor operating conditions for optimal production. This article will present the evaluation and application of a BioCad/RPM system (Per Septive Biosystems) for rapid analysis of lgG concentration for hybridoma cell cultivation. Several commercial crossflow filtration devices are tested for low protein retention and fouling properties. A protein G column is used successfully for analyzing about 400 samples of lgG(1), without significant loss in separation efficiency. The Immuno Detection system is integrated into a computer-controlled 15-L fermentor. This fermentor could be operated in batch and perfusion modes with cell densities up to 20 million cells/mL. A continuous cell-free sample stream obtained by a hollow fiber filter system is introduced to the BioCad/RPM for analysis. The speed of this system allows for real-time monitoring even at high densities with fast dynamics. A murine hybridoma cell (A10G10) is cultivated in batch and continuous reactors and antibody concentration is measured continuously with complete sterility. The results are compared to offline measurements with good agreement. (c) 1995 John Wiley & Sons, Inc. 相似文献
8.
On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy 总被引:7,自引:0,他引:7
In this work, dielectric spectroscopy was used to monitor two CHO perfusion culture experiments (B14 and B16). The capacitance of the cell suspension was recorded every 20 minutes over an excitation frequency range of 0.2 MHz to 10.0 MHz. A phase plot of the capacitance at a low excitation frequency vs. the value at a higher frequency proved to be an accurate indicator of the major transition points of the culture, i.e., maximum cell viability, end of lactate consumption, point of zero viability. For both experiments, the capacitance signal correlated very well (R(2) >0.98) with viable cell number up to concentrations of 1 x 10(7) cells/mL. Visual observation of the capacitance spectra indicated that changes in the capacitance relative to frequency were related to the cellular morphology. A multivariate model was developed using off-line data that could predict the median cell diameter within a single experiment (B14) with an error of 0.34 microm (2%). Upon extension to a subsequent experiment (B16), the predicted error was 1.18 microm (9%). 相似文献
9.
Konstantinov KB Pambayun R Matanguihan R Yoshida T Perusicn CM Hu WS 《Biotechnology and bioengineering》1992,40(11):1337-1342
A high-sensitivity turbidity probe was used for on-line monitoring of the cell concentration in batch hybridoma cultivation. Good correlation between off-line cell counts and the linearized sensor signal was found. The quality of the signal was sufficiently high to provide for on-line estimation of the specific growth rate using an efficient filtering procedure. These positive results suggest that such laser turbidity sensors will facilitate development of systems for on-line monitoring and control of animal cell cultivations. (c) 1992 John Wiley & Sons, Inc. 相似文献
10.
On-line characterization of a hybridoma cell culture process 总被引:2,自引:0,他引:2
The on-line determination of the physiological state of a cell culture process requires reliable on-line measurements of various parameters and calculations of specific rates from these measurements. The cell concentration of a hybridoma culture was estimated on-line by measuring optical density (OD) with a laser turbidity probe. The oxygen uptake rate (OUR) was determined by monitoring dynamically dissolved oxygen concentration profiles and closing oxygen balances in the culture. The base addition for neutralizing lactate produced by cells was also monitored on-line via a balance. Using OD and OUR measurements, the specific growth and specific oxygen consumption rates were determined on-line. By combining predetermined stoichiometric relationships among oxygen and glucose consumption and lactate production, the specific glucose consumption and lactate production rates were also calculated on-line. Using these on-line measurements and calculations, the hybridoma culture process was characterized on-line by identifying the physiological states. They will also facilitate the implementation of nutrient feeding strategies for fed-batch and perfusion cultures. (c) 1994 John Wiley & Sons, Inc. 相似文献
11.
The molecular integrity of monoclonal antibodies (MCAB) produced by murine hybridoma cell line TB/C3 was studied in batch and continuous-flow cultures. In batch culture, one band of MCAB was detected initially by Western blotting of sodium dodecyl sulfate (SDS)-polyacrylamide gels run under unreduced conditions, but heterogenous MCAB bands appeared as the culture aged. The latter were due to the degradation of MCAB by proteases active at the neutral pH of the culture. The deleterious effect of proteases was minimized in the continuous-flow cultures which were integrated for product recovery. The MCAB of high quality was purified over 26 days from a culture grown at a dilution rate of 0.025 h(-1) (experiment 1). However, at a lower dilution rate of 0.015 h(-1) (experiment 2), the integrity of MCAB was compromised after the initial 13 days of culture. This was shown to be due to the variation in the carbohydrate content of MCAB produced, as judged by the increased sialylation of heavy chains and the varied reactivity of MCAB with lectins (Maackia amurensis agglutinin, Galanthus nivalis agglutinin, and Datura stramonium agglutinin) as the age of the culture increased. The concentration of the purified MCAB samples by enzyme-linked immunosorbent assay (ELISA) (used normally) was usually higher than that estimated by absorbance at 280 nm. Best correlation between the two methods (ELISA-280 nm ratio of 1.02-1.25) was obtained with experiment 1 samples. This ratio increased in experiment 2 and batch culture samples as the heterogeneity of MCAB produced increased, being 1.03-2.94 and 2.53-4.62, respectively. Therefore, ELISA overestimated MCAB concentration when the molecular integrity of the latter was compromised. The ELISA-A(280) nm ratio might hence provide a useful indicator for assessing the quality of MCAB produced. Comparison of SDS-polyacrylamide gels stained with Coomassie Brilliant Blue R and silver showed that the former correlated better with the MCAB activity stain, whereas the silver stained both the protein- and carbohydrate-rich components. Comparison of the patterns produced with these two stains might therefore offer another parameter to monitor the overall integrity of MCAB produced. Finally, the data presented have important implications on the validity of using long-term and intensive cultures for generating MCAB because such cultures would be subjected to the additive effects reported for batch and continuous modes of growth. (c) 1993 John Wiley & Sons, Inc. 相似文献
12.
动物细胞培养过程中的细胞自然凋亡 总被引:3,自引:0,他引:3
细胞培养过程中的细胞自然凋亡是细胞受环境压力的影响而发生的现象。随着细胞自然凋亡的分子生物学和生物化学研究的深入,对以动物细胞产品生产为目的的细胞培养产业将产生极有价值的影响。采用DNA重组技术把预防细胞自然凋亡的基因导入细胞和在培基中加入具有抗细胞自然凋亡的化合物等手段已用于预防或减缓细胞培养过程中的细胞自然凋亡。这些技术将大大延长细胞达到饱和密度后的培养时间,从而使细胞培养系统的生产效率得以显著提高。 相似文献
13.
Szmacinski H Smith DS Hanson MA Kostov Y Lakowicz JR Rao G 《Biotechnology and bioengineering》2008,100(3):448-457
We describe a new format for surface-based fluoroimmunoassays that allows detection of biomolecule interactions without separation steps. The bioactive layer was immobilized on the surface of a glass substrate covered with silver islands that provide optical amplification of the distinctive fluorescence signal from bound probes when compared to unbound probes. The technique used was phase-modulation fluorometry that allows sensitive detection of bound probes with a very short lifetime in the presence of excess free probes in solution. The new method was applied to assay monoclonal antibody production during cell culture. Excellent agreement was found between the new method and ELISA analysis of hybridoma cell culture samples. It is predicted that the near real time monitoring of protein products during bioprocessing will be possible with the described technology. 相似文献
14.
Different methods for oxygen uptake rate (OUR) determinations in animal cell cultivation were investigated using a high quality mass spectrometer. Dynamic measurements have considerable disadvantages because of disturbances of the growing cells by the necessary variations of dissolved oxygen concentration. Only infrequent discrete measurements are possible using this method. Stationary liquid phase balance yielded better results with much higher frequency. Gas phase balancing has the advantage of not requiring dissolved oxygen measurement and knowledge of K(L)a, both of them are easily biased. It was found that simple gas phase balancing is either very inaccurate (error larger than expected signal) or very slow, with gas phase residence times of several hours. Therefore, a new method of aeration was designed. Oxygen and CO(2) transfer are mainly achieved via sparging. The gas released to the headspace is diluted with a roughly 100-fold stream of an inert gas (helium). Through this dilution, gas ratios are not changed for O(2), CO(2), Ar, and N(2). The measurement of lower concentrations (parts per million and below) is easy using mass spectrometry with a secondary electron multiplier. With this new method an excellent accuracy and sufficient speed of analysis were obtained. All these on-line methods for OUR measurement were tested during the cultivation of animal cells. The new method allowed better study of the kinetics of animal cell cultures as was shown with a hybridoma cell line (HFN 7.1, ATCC CRL 1606) producing monoclonal antibodies against human fibronectin. With the aid of these methods it was possible to find a correlation between a rapid decrease in oxygen uptake rate (OUR) and glutamine concentration. The sudden decrease in OUR can be attributed to glutamine depletion. This provided a basis for the controlled addition of glutamine to reduce the formation of ammonia produced by hydrolysis. This control method based on OUR measurement resulted in increased cell concentration and threefold higher product concentration. (c) 1995 John Wiley & Sons, Inc. 相似文献
15.
Mouse-human hybridoma X87X cells were cultivated using a novel perfusion culture apparatus provided with three-settling zones to separate the cells from the culture medium by gravitational settling. The maximum viable cell density in a serum-free culture medium attained 3.0×107 cells/ml, when the specific perfusion rate was set to 2.3 vol day-1, and monoclonal antibody was continuously produced. These results were almost the same as those in the perfusion culture vessel with one settling zone and revealed that the process with a plurality of settling zones is a promising one for scale-up of a gravitation type of perfusion culture vessel. 相似文献
16.
Hongcheng Liu Christine Nowak Mei Shao Gomathinayagam Ponniah Alyssa Neill 《Biotechnology progress》2016,32(5):1103-1112
Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103–1112, 2016 相似文献
17.
Enhanced production of human monoclonal antibodies by the use of fructose in serum-free hybridoma culture media 总被引:1,自引:0,他引:1
It was found that the production of human monoclonal antibodies (MoAbs) by human-human hybridomas can be significantly enhanced by replacing glucose with fructose in the dish culture medium. Optimization of initial concentrations of fructose and glutamine, another influencing factor for MoAb production, enabled an enhanced production of human MoAb 2.1 times higher than that obtained using the conventional culture media employing glucose. It was shown by kinetic analysis that enhanced MoAb production at the optimum fructose concentration can be attributed to the retention of high specific antibody production rates and diminished time lag during the course of culture.These dish culture results with fructose-containing medium were successfully applied to the continuous perfusion culture with a slight modification, where 2.9- and 1.9-fold enhancements in specific antibody production rate and MoAb concentration, respectively, were attained as compared with the conventional glucose-containing medium.An inverse relationship was observed between the secreted concentrations of lactic acid and MoAb when the hybridoma was cultured in the media containing varying concentrations of fructose, i.e., the lower the lactic acid concentration, the higher the MoAb production andvice versa, suggesting that fructose at appropriate concentrations in the medium can serve as an alternative sugar for the efficient production of human MoAbs, with reduced pH shifts, for the serum-free culture of human-human hybridomas. 相似文献
18.
Human-human hybridomas which secrete a human monoclonal antibody (h-MoAb) against hepatitis B virus surface antigen showed growth associated production kinetics. The rate of h-MoAb production rapidly decreased after cell growth was arrested in a perfusion culture, even if the perfusion rate was increased. A continuous suspended-perfusion culture, in which both culture broth and culture supernatant are continuously harvested and the same volume of fresh medium is continuously fed into the reactor, was developed to maintain continuous growing conditions during cultivation. In this culture system, the production of h-MoAb continued for more than 50 days with an average productivity of 5.0 mg/l of working volume/day. A semicontinuous immobilized-perfusion culture in which parts of the cells are repeatedly removed from the immobilized reactor was another useful technique for the long term cultivation of these h-h hybridomas. As an average h-MoAb production rate, 62 mg/l of immobilized-bed volume/day was achieved for 65 days of cultivation using a ceramic matrix reactor, and 327 mg/l/day was achieved over 47 days of cultivation using a hollow fiber reactor equipped with Cultureflo MTM Thus, the antibody productivity per reactor volume per day by the semicontinuous immobilized-perfusion culture was much higher than that of the continuous perfusion culture in an agitation reactor. 相似文献
19.
O2 uptake rates of animal cells (Chinese hamster ovary-CHO) were measured in 96-well microtiter plates by integrating with fluorescent sensors thereby measuring fluorescence intensity ratios of an O2-sensitive and an insensitive fluorophor. O2 consumption rate was estimated from measured dissolved O2 and from O2 mass transfer coefficient determined in advance. Specific uptake decreased with time from 3.2 x 10(-13) mol O2 cell(-1) h(-1) at 15 h cultivation to 1.8 x 10(-13) mol O2 cell(-1) h(-1) at 48 h. Specific O2 uptake was also determined by sampling from a spinner-flask culture giving identical values. A cell viability assay for cultures based on O2 measurements is described in which cells are incubated outside the fluorescence reader and then the dissolved O2 is measured only once at a fixed time after the start of incubation. This protocol can be directly applied for high-throughput measurements. 相似文献
20.
In animal cell culture, there are some 25 substrates that both have a significant effect on the culture performance and which can be measured with relative ease. A detailed dynamic simulation for such a culture has been produced and an optimisation policy that use this model to identify ideal media conditions has been developed. This paper describes an extension of that work to include the dynamic optimisation of cultures under fed-batch operation. Two different types of feeding policy were considered – in the first, discrete shots of feed were supplied, while in the second, feed was added continuously. Both policies offered significant improvements in the predicted productivity of the culture - up to 30% that of an experimentally optimisedbatch culture. 相似文献