首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned a peptide transporter from rat brain and found itto be identical to rat kidney PEPT2. In the present study wecharacterize the transport function of the rat brain PEPT2, withspecial emphasis on electrophysiological properties and interaction withN-acetyl-L-aspartyl-L-glutamate(NAAG). When heterologously expressed in HeLa cells and in SK-N-SHcells, PEPT2 transports several dipeptides but not free amino acids inthe presence of a proton gradient. NAAG competes with other peptidesfor the PEPT2-mediated transport process. When PEPT2 is expressed inXenopus laevis oocytes, substrate-induced inward currents are detectable with dipeptides ofdiffering charge in the presence of a proton gradient. Proton activation kinetics are similar for differently charged peptides. NAAGis a transportable substrate for PEPT2, as evidenced by NAAG-induced currents. The Hill coefficient for protons for the activation of thetransport of differently charged peptides, including NAAG, is 1. Although the peptide-to-proton stoichiometry for negatively chargedpeptides is 1, the transport nonetheless is associated with transfer ofpositive charge into the oocyte, as indicated by peptide-induced inwardcurrents.

  相似文献   

2.
The capability for electrogenic inward transport of substrates that carry different net charge is a phenomenon observed in a variety of membrane-solute transporters but is not yet understood. We employed the two-electrode voltage clamp technique combined with intracellular pH recordings and the giant patch technique to assess the selectivity for bidirectional transport and the underlying stoichiometries in proton to substrate flux coupling for electrogenic transfer of selected anionic, cationic, and neutral dipeptides by the intestinal peptide transporter PEPT1. Anionic dipeptides such as Gly-Asp and Asp-Gly are transported in their neutral and negatively charged forms with high and low affinities, respectively. The positive transport current obtained with monoanionic substrates results from the cotransport of two protons. Cationic dipeptides can be transported in neutral and positively charged form, resulting in an excess transport current as compared with neutral substrates. However, binding and transport of cationic dipeptides shows a pronounced selectivity for the position of charged side chains demonstrating that the binding domain of PEPT1 is asymmetric, both in its inward and outward facing conformation. The simultaneous presence of identically charged substrates on both membrane surfaces generates outward and, unexpectedly, enhanced inward transport currents probably by increasing the turnover rate.  相似文献   

3.
Free amino acids and short chain peptides are the main digestion products of dietary proteins in the small intestine. Whether there is a direct interference in transport of both groups of degradation products is not known. We used human intestinal Caco-2 cells to investigate whether the absorption of dipeptides by the peptide transporter PEPT1 alters the apical uptake of free cationic and neutral amino acids. Influx of L-[3H]Arg into Caco-2 cells was Na+-independent and mediated mainly by the b(0,+) system recognizing both cationic and neutral amino acids. Preincubation of cells with 10 mM of selected neutral, mono- or dicationic dipeptides increased the influx of L-Arg up to fourfold. Preloading with equivalent concentrations of the corresponding free amino acids also increased L-Arg influx but dipeptides always proved to be more efficient. The observed trans-stimulation was found to be specific for cationic amino acids since transport of L-[3H]Ala remained unaffected. We here demonstrate for the first time a direct interplay in amino acid and peptide transport in intestinal cells that may selectively alter the kinetics of amino acid absorption.  相似文献   

4.
This study was initiated to develop inhibitors of the intestinal H(+)/peptide symporter. We provide evidence that the dipeptide derivative Lys[Z(NO(2))]-Pro is an effective competitive inhibitor of mammalian PEPT1 with an apparent binding affinity of 5-10 microM. Characterization of the interaction of Lys[Z(NO(2))]-Pro with the substrate binding domain of PEPT1 has been performed in (a) monolayer cultures of human Caco-2 cells expressing PEPT1, (b) transgenic Pichia pastoris cells expressing PEPT1, and (c) Xenopus laevis oocytes expressing PEPT1. By competitive uptake studies with radiolabeled dipeptides, HPLC analysis of Lys[Z(NO(2))]-Pro in cells, and electrophysiological techniques, we unequivocally show that Lys[Z(NO(2))]-Pro binds with high affinity to PEPT1, competes competitively with various dipeptides for uptake into cells, but is not transported itself. Lack of transport was substantiated by the absence of Lys[Z(NO(2))]-Pro in Caco-2 cell extracts as determined by HPLC analysis, and by the absence of any positive inward currents in oocytes when exposed to the inhibitor. The fact that Lys[Z(NO(2))]-Pro can bind to PEPT1 from the extracellular as well as the intracellular site was shown in the oocyte expression system by a strong inhibition of dipeptide-induced currents under voltage clamp conditions. Our findings serve as a starting point for the identification of the substrate binding domain in the PEPT1 protein as well as for studies on the physiological and pharmacological role of PEPT1.  相似文献   

5.
In this study we described the design, rational synthesis and functional characterization of a novel radiolabeled hydrolysis-resistant high-affinity substrate for H(+)/peptide cotransporters. L-4,4'-Biphenylalanyl-L-Proline (Bip-Pro) was synthesized according to standard procedures in peptide chemistry. The interaction of Bip-Pro with H(+)/peptide cotransporters was determined in intestinal Caco-2 cells constitutively expressing human H(+)/peptide cotransporter 1 (PEPT1) and in renal SKPT cells constitutively expressing rat H(+)/peptide cotransporter 2 (PEPT2). Bip-Pro inhibited the [(14)C]Gly-Sar uptake via PEPT1 and PEPT2 with exceptional high affinity (K(i) = 24 microm and 3.4 microm, respectively) in a competitive manner. By employing the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT1 or PEPT2 it was found that Bip-Pro was transported by both peptide transporters although to a much lower extent than the reference substrate, Gly-Gln. Bip-Pro remained intact to > 98% for at least 8 h when incubated with intact cell monolayers. Bip-[(3)H]Pro uptake into SKPT cells was linear for up to 30 min and pH dependent with a maximum at extracellular pH 6.0. Uptake was strongly inhibited, not only by unlabeled Bip-Pro but also by known peptide transporter substrates such as dipeptides, cefadroxil, Ala-4-nitroanilide and delta-aminolevulinic acid, but not by glycine. Bip-Pro uptake in SKPT cells was saturable with a Michaelis-Menten constant (K(t)) of 7.6 microm and a maximal velocity (V(max)) of 1.1 nmol x 30 min(-1) x mg of protein(-1). Hence, the uptake of Bip-Pro by PEPT2 is a high-affinity, low-capacity process in comparison to the uptake of Gly-Sar. We conclude that Bip-[(3)H]Pro is a valuable substrate for both mechanistic and structural studies of H(+)/peptide transporter proteins.  相似文献   

6.
This study describes for the first time the presence of H+-peptide cotransport in cells of the bile duct. Uptake of [glycine-1-14C]glycylsarcosine ([14C]Gly-Sar) in human extrahepatic cholangiocarcinoma SK-ChA-1 cells was stimulated sevenfold by an inwardly directed H+ gradient. Transport was mediated by a low-affinity system with a transport constant (Kt) value of 1.1 mM. Several dipeptides, cefadroxil, and delta-aminolevulinic acid, but not glycine and glutathione, were strong inhibitors of Gly-Sar uptake. SK-ChA-1 cells formed tight, polarized monolayers on permeable membranes. The transepithelial electrical resistance was 856 +/- 29 omega x cm(2). The transepithelial flux of [14C]Gly-Sar in apical-to-basolateral direction exceeded the basolateral-to-apical flux 11-fold. Uptake was 20-fold higher from the apical side. RT-PCR analysis using primer pairs specific for the intestinal-type peptide transporter (PEPT1) or kidney-type (PEPT2) revealed that the transport system expressed in SK-ChA-1 and also in cells of the native rabbit bile duct is PEPT1. Immunohistochemistry localized PEPT1 to the apical membrane of cholangiocytes of mouse extrahepatic biliary duct. We conclude that the cells of the mammalian extrahepatic biliary tract epithelium express the intestinal-type H+-peptide cotransporter in their apical membrane. SK-ChA-1 cells represent a convenient model to study the physiological and clinical aspects of peptide transport in cholangiocytes.  相似文献   

7.
Recently the existence of two different Na(+)-coupled oligopeptide transport systems has been described in mammalian cells. These transport systems are distinct from the previously known H(+)/peptide cotransporters PEPT1 and PEPT2, which transport only dipeptides and tripeptides. To date, the only peptide transport system known to exist in the intestine is PEPT1. Here we investigated the expression of the Na(+)-coupled oligopeptide transporters in intestinal cell lines, using the hydrolysis-resistant synthetic oligopeptides deltorphin II and [d-Ala(2),d-Leu(5)]enkephalin (DADLE) as model substrates. Caco-2 cells and CCD841 cells, both representing epithelial cells from human intestinal tract, were able to take up these oligopeptides. Uptake of deltorphin II was mostly Na(+) dependent, with more than 2 Na(+) involved in the uptake process. In contrast, DADLE uptake was only partially Na(+) dependent. The uptake of both peptides was also influenced by H(+) and Cl(-), although to a varying degree. The processes responsible for the uptake of deltorphin II and DADLE could be differentiated not only by their Na(+) dependence but also by their modulation by small peptides. Several dipeptides and tripeptides stimulated deltorphin II uptake but inhibited DADLE uptake. These modulating small peptides were, however, not transportable substrates for the transport systems that mediate deltorphin II or DADLE uptake. These two oligopeptide transport systems were also able to take up several nonopioid oligopeptides, consisting of 9-17 amino acids. This represents the first report on the existence of transport systems in intestinal cells that are distinct from PEPT1 and capable of transporting oligopeptides consisting of five or more amino acids.  相似文献   

8.
The interaction of the antibacterial phosphonodipeptide alafosfalin with mammalian H(+)/peptide cotransporters was studied in Caco-2 cells, expressing the low-affinity intestinal type peptide transporter 1 (PEPT1), and SKPT cells, expressing the high-affinity renal type peptide transporter 2 (PEPT2). Alafosfalin strongly inhibited the uptake of [(14)C]glycylsarcosine with K(i) values of 0.19 +/- 0.01 mm and 0.07 +/- 0.01 mm for PEPT1 and PEPT2, respectively. Saturation kinetic studies revealed that in both cell types alafosfalin affected only the affinity constant (K(t)) but not the maximal velocity (V(max)) of glycylsarcosine (Gly-Sar) uptake. The inhibition constants and the competitive nature of inhibition were confirmed in Dixon-type experiments. Caco-2 cells and SKPT cells were also cultured on permeable filters: apical uptake and transepithelial apical to basolateral flux of [(14)C]Gly-Sar across Caco-2 cell monolayers were reduced by alafosfalin (3 mm) by 73%. In SKPT cells, uptake of [(14)C]Gly-Sar but not flux was inhibited by 61%. We found no evidence for an inhibition of the basolateral to apical uptake or flux of [(14)C]Gly-Sar by alafosfalin. Alafosfalin (3 mm) did not affect the apical to basolateral [(14)C]mannitol flux. Determined in an Ussing-type experiment with Caco-2 cells cultured in Snapwells trade mark, alafosfalin increased the short-circuit current through Caco-2 cell monolayers. We conclude that alafosfalin interacts with both H(+)/peptide symporters and that alafosfalin is actively transported across the intestinal epithelium in a H(+)-symport, explaining its oral availability. The results also demonstrate that dipeptides where the C-terminal carboxyl group is substituted by a phosphonic function represent high-affinity substrates for mammalian H(+)/peptide cotransporters.  相似文献   

9.
To elucidate the decisive structural factors relevant for dipeptide-carrier interaction, the affinity of short amide and imide derivatives for the intestinal H+/peptide symporter (PEPT1) was investigated by measuring their ability to inhibit Gly-Sar transport in Caco-2 cells. Dipeptides with proline or alanine in the C-terminal position displayed affinity constants (Ki) of 0.15-1.2 mM and 0.08-9.5 mM, respectively. There was no clear relationship between hydrophobicity, size or ionization status of the N-terminal amino acid and the affinity of the dipeptides. However, analyzing the individual peptide bond conformations of Xaa-Pro dipeptides, a striking correlation between the cis/trans ratios (trans contents 24-70%) and the affinity constants was observed. After correcting the Ki values for the incompetent cis isomers, the Ki corr values of most dipeptides were in a small range of 0.1-0.16 mM. This result revealed the decisive role of peptide bond conformation even for a transport protein that is quite promiscuous in substrate translocation. When measuring affinity constants of Xaa-Pro and Xaa-Sar dipeptides, the cis/trans ratios cannot be ignored. Lower affinities of Lys-Pro, Arg-Pro and Pro-Pro indicate that additional molecular factors affect their binding at PEPT1. The Ki values obtained for the corresponding Xaa-Ala dipeptides support this conclusion. Potential substrates or inhibitors of peptide transport were found among Xaa-piperidides and Xaa-thiazolidides. Dipeptides with N-terminal proline displayed a very diverse affinity profile. However, in contrast to current knowledge, several Pro-Xaa dipeptides such as Pro-Leu, Pro-Tyr and Pro-Pro are recognized by PEPT1 with appreciable affinities. Binding seems mainly determined by the hydrophobicity of the C-terminal amino acid and the rigidity of the structure.  相似文献   

10.
In this study, we describe the rational synthesis and functional analysis of novel high affinity inhibitors for the mammalian peptide transporter PEPT2. Moreover, we demonstrate which structural properties convert a transported compound into a non-translocated inhibitor. Starting from Lys[Z(NO(2))]-Pro (where Z is benzyloxycarbonyl), which we recently identified as the first competitive high affinity inhibitor of the intestinal peptide transporter PEPT1, a series of different lysine-containing dipeptide derivatives was synthesized and studied for interaction with PEPT2 based on transport competition assays in Pichia pastoris yeast cells expressing PEPT2 heterologously and in renal SKPT cells expressing PEPT2. In addition, the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT2 was used to determine whether the compounds are transported electrogenically or block the uptake of dipeptides. Synthesis and functional analysis of Lys-Lys derivatives containing benzyloxycarbonyl or 4-nitrobenzyloxycarbonyl side chain protections provided a set of inhibitors that reversibly inhibited the uptake of dipeptides by PEPT2 with K(i) values as low as 10 +/- 1 nm. This is the highest affinity of a ligand of PEPT2 ever reported. Moreover, based on the structure-function relationship, we conclude that the spatial location of the side chain amino protecting group in a dipeptide containing a diaminocarbonic acid and its intramolecular distance from the Calpha atom are key factors for the transformation of a substrate into an inhibitor of PEPT2.  相似文献   

11.
Melittin (MLT), a 26-residue cationic (net charge +5 at pH 7.2) peptide from bee venom, is well known to be a monomeric, approximately random coil; but when its charges are reduced by titration, by acetylation (net charge +2) or succinylation (net charge -2), or by screening by salt, it goes over to tetrameric alpha-helix. The conversion is promoted by raising the peptide concentration. The tetramer is held together by hydrophobic forces. We have changed the net charge to -6 by acylation with acetylcitric anhydride (a new acylating agent); this anionic derivative forms tetrameric helix at neutral pH, without salt, and at relatively low concentration, conditions under which the cationic MLT does not become helical. Thus, a high net charge is not sufficient to prevent association and helix formation. We have synthesized an anionic melittin analogue of MLT (E-MLT; net charge -4) in which all five lysine and arginine residues are replaced with glutamate, and acetyl and succinyl derivatives of E-MLT (net charges -5 and -6). All three of these are resistant to helix formation. They require much higher NaCl or NaClO4 concentration for helix formation than does MLT. Even CaCl2, MgCl2, and spermine.4HCl are less effective in helicizing E-MLT than MLT. MLT, at pH 7.2, shows increasing helix as the peptide concentration increases (8-120 microM), but E-MLT and its acyl derivatives do not. MLT and acylated MLTs in the helical tetramer show both cold- and heat-induced unfolding, with maximum stability near room temperature. At high temperature, a significant amount of residual structure remains. Heating (to 100 degrees C) monomeric MLT (i.e., MLT at low concentration) or E-MLT results in a monotonic increase in negative ellipticity. In 1.0 M NaCl, E-MLT (at sufficiently high concentration) also shows cold and hot unfolding. The results are discussed in respect to charge-charge and charge-dipole interactions, and hydrophobic effects. E-MLT is also discussed in relation to proteins of halophilic bacteria, which have higher proportions of anionic residues than do corresponding proteins of nonhalophiles.  相似文献   

12.
The lactating mammary gland utilizes free plasma amino acids as well as those derived by hydrolysis from circulating short-chain peptides for protein synthesis. Apart from the major route of amino acid nitrogen delivery to the gland by the various transporters for free amino acids, it has been suggested that dipeptides may also be taken up in intact form to serve as a source of amino acids. The identification of peptide transporters in the mammary gland may therefore provide new insights into protein metabolism and secretion by the gland. The expression and distribution of the high-affinity type proton-coupled peptide transporter PEPT2 were investigated in rat lactating mammary gland as well as in human epithelial cells derived from breast milk. By use of RT-PCR, PEPT2 mRNA was detected in rat mammary gland extracts and human milk epithelial cells. The expression pattern of PEPT2 mRNA revealed a localization in epithelial cells of ducts and glands by nonisotopic high resolution in situ hybridization. In addition, immunohistochemistry was carried out and showed transporter immunoreactivity in the same epithelial cells of the glands and ducts. In addition, two-electrode voltage clamp recordings using PEPT2-expressing Xenopus laevis oocytes demonstrated positive inward currents induced by selected dipeptides that may play a role in aminonitrogen handling in mammalian mammary gland. Taken together, these data suggest that PEPT2 is expressed in mammary gland epithelia, in which it may contribute to the reuptake of short-chain peptides derived from hydrolysis of milk proteins secreted into the lumen. Whereas PEPT2 also transports a variety of drugs, such as selected beta-lactams, angiotensin-converting enzyme inhibitors, and antiviral and anticancer metabolites, their efficient reabsorption via PEPT2 may reduce the burden of xenobiotics in milk.  相似文献   

13.
Ortiz A  Cajal Y  Haro I  Reig F  Alsina MA 《Biopolymers》2000,53(6):455-466
The interaction of the multiple antigenic peptide MAP4VP3 with lipid membranes has been studied by spectroscopic techniques. MAP4VP3 is a multimeric peptide that corresponds to four units of the sequence 110-121 of the capsid protein VP3 of hepatitis A virus. In order to evaluate the electrostatic and hydrophobic components on the lipid-peptide interaction, small unilamelar vesicles of different compositions, including zwitterionic dipalmitoylphosphatidylcholine (DPPC), anionic dipalmitoylphosphatidylcholine/phatidylinositol (DPPC:PI 9:1), and cationic dipalmitoylphosphatidylcholine/stearylamine (DPPC:SA 9.5:0.5), were used as membrane models. Intrinsic tryptophan fluorescence changes and energy transfer experiments show that MAP4VP3 binds to all three types of vesicles with the same stoichiometry, indicating that the electrostatic component of the interaction is not important for binding of this anionic peptide. Steady-state polarization experiments with vesicles labeled with 1,6-diphenyl-1,3,5-hexatriene or with 1-anilino-8-naphtalene sulphonic acid indicate that MAP4VP3 induces a change in the packing of the bilayers, with a decrease in the fluidity of the lipids and an increase in the temperature of phase transition in all the vesicles. The percentage of lipid exposed to the bulk aqueous phase is around 60% in intact vesicles, and it does not change upon binding of MAP4VP3 to DPPC vesicles, indicating that the peptide does not alter the permeability of the membrane. An increase in the amount of lipid exposed to the aqueous phase in cationic vesicles indicates either lipid flip-flop or disruption of the vesicles. Binding to DPPC vesicles occurs without leakage of entrapped carboxyfluorescein, even at high mol fractions of peptide. However, a time-dependent leakage is seen with cationic DPPC/SA and anionic DPPC/PI vesicles, indicating that the peptide induces membrane destabilization and not lipid flip-flop. Resonance energy transfer experiments show that MAP4VP3 leakage from cationic vesicles is due to membrane fusion, whereas leakage from anionic vesicles is not accompanied by lipid mixing. Results show that MAP4VP3 interacts strongly with the lipid components of the membrane, and although binding is not of electrostatic nature, the bound form of the peptide has different activity depending on the membrane net charge; thus, it is membrane disruptive in cationic and anionic vesicles, whereas no destabilizing effect is seen in DPPC vesicles.  相似文献   

14.
Isolation and characterization of a cDNA encoding rat cationic trypsinogen   总被引:4,自引:0,他引:4  
A cDNA encoding rat cationic trypsinogen has been isolated by immunoscreening from a rat pancreas cDNA library. The protein encoded by this cDNA is highly basic and contains all of the structural features observed in trypsinogens. The amino acid sequence of rat cationic trypsinogen is 75% and 77% homologous to the two anionic rat trypsinogens. The homology of rat cationic trypsinogen to these anionic trypsinogens is lower than its homology to other mammalian cationic trypsinogens, suggesting that anionic and cationic trypsins probably diverged prior to the divergence of rodents and ungulates. The most unusual feature of this trypsinogen is the presence of an activation peptide containing five aspartic acid residues, in contrast to all other reported trypsinogen activation peptides which contain four acidic amino acid residues. Comparisons of cationic and anionic trypsins reveal that the majority of the charge changes occur in the C-terminal portion of the protein, which forms the substrate binding site. Several regions of conserved charge differences between cationic and anionic trypsins have been identified in this region, which may influence the rate of hydrolysis of protein substrates.  相似文献   

15.
The transport of dipeptides and β-lactam antibiotics across the rat renal basolateral membrane was examined. The initial uptake of glycylsarcosine and cefadroxil by rat renal basolateral membrane vesicles was inhibited by the presence of all the di- and tripeptides and β-lactam antibiotics that were tested in this study. However, the uptake of both substrates was not inhibited by glycine, an amino acid. The initial uptake of zwitterionic β-lactam antibiotics, cefadroxil, cephradine, and cephalexin, was stimulated by preloaded glycylsarcosine (countertransport effect). On the other hand, the uptake of dianionic β-lactam antibiotics, ceftibuten and cefixime, was not affected. A concentration-dependent initial uptake of glycylsarcosine and cefadroxil suggested the existence of a carrier-mediated mechanism, whereas the transport of ceftibuten did not show any saturated uptake. The transporter that participates in the permeation of dipeptides and β-lactam antibiotics across basolateral membranes showed lower affinity than did PEPT1 and PEPT2. This is the first study that showed an evidence for a peptide transporter, expressed in the rat renal basolateral membrane, that recognizes zwitterionic β-lactam antibiotics using basolateral membrane vesicles isolated from normal rat kidney.  相似文献   

16.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

17.
The transport of dipeptides and beta-lactam antibiotics across the rat renal basolateral membrane was examined. The initial uptake of glycylsarcosine and cefadroxil by rat renal basolateral membrane vesicles was inhibited by the presence of all the di- and tripeptides and beta-lactam antibiotics that were tested in this study. However, the uptake of both substrates was not inhibited by glycine, an amino acid. The initial uptake of zwitterionic beta-lactam antibiotics, cefadroxil, cephradine, and cephalexin, was stimulated by preloaded glycylsarcosine (countertransport effect). On the other hand, the uptake of dianionic beta-lactam antibiotics, ceftibuten and cefixime, was not affected. A concentration-dependent initial uptake of glycylsarcosine and cefadroxil suggested the existence of a carrier-mediated mechanism, whereas the transport of ceftibuten did not show any saturated uptake. The transporter that participates in the permeation of dipeptides and beta-lactam antibiotics across basolateral membranes showed lower affinity than did PEPT1 and PEPT2. This is the first study that showed an evidence for a peptide transporter, expressed in the rat renal basolateral membrane, that recognizes zwitterionic beta-lactam antibiotics using basolateral membrane vesicles isolated from normal rat kidney.  相似文献   

18.
Investigation of magainin II amide analogs with cationic charges ranging between +3 and +7 showed that enhancement of the peptide charge up to a threshold value of +5 and conservation of appropriate hydrophobic properties optimized the antimicrobial activity and selectivity. High selectivity was the result of both enhanced antimicrobial and reduced hemolytic activity. Charge increase beyond +5 with retention of other structural motifs led to a dramatic increase of hemolytic activity and loss of antimicrobial selectivity. Selectivity could be restored by reduction of the hydrophobicity of the hydrophobic helix surface (H(hd)), a structural parameter not previously considered to modulate activity. Dye release experiments with lipid vesicles revealed that the potential of peptide charge to modulate membrane activity is limited: on highly negatively charged 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol bilayers, reinforcement of electrostatic interactions had an activity-reducing effect. On neutral 1-palmitoyl-2-oleoylphosphatidylcholine bilayers, the high activity was determined by H(hd). H(hd) values above a certain threshold led to effective permeabilization of all lipid systems and even compensated for the activity-reducing effect of charge increase on highly negatively charged membranes.  相似文献   

19.
5-Aminolevulinic acid (5-ALA) is a precursor of porphyrins and heme that has been implicated in the neuropsychiatric symptoms associated with porphyrias. It is also being used clinically to delineate malignant gliomas. The blood-CSF barrier may be an important interface for 5-ALA transport between blood and brain as in vivo studies have indicated 5-ALA is taken up by the choroid plexuses whereas the normal blood-brain barrier appears to be relatively impermeable. This study examines the mechanisms of 5-[(3)H]ALA uptake into isolated rat lateral ventricle choroid plexuses. Results suggest that there are two uptake mechanisms. The first was a Na(+)-independent uptake system that was pH dependent (being stimulated at low pH). Uptake was inhibited by the dipeptide Gly-Gly and by cefadroxil, an alpha-amino-containing cephalosporin. These properties are the same as the proton-dependent peptide transporters PEPT1 and PEPT2, which have recently been shown to transport 5-ALA in frog oocyte expression experiments. Choroid plexus uptake was not inhibited by captopril, a PEPT1 inhibitor, suggesting PEPT2-mediated uptake. The presence of PEPT2 and absence of PEPT1 in the choroid plexus were confirmed by western blotting. The second potential mechanism was both Na(+) and HCO(3)(-) dependent and appears to be an organic anion transporter, although it is possible that removal of Na(+) and HCO(3)(-) may indirectly affect PEPT2 by affecting intracellular pH. The presence of PEPT2 and a putative Na(+)/HCO(3)(-)-dependent organic anion transporter is important not only for an understanding of 5-ALA movement between blood and brain but also because these transporters may affect the distribution of a number of drugs between blood and CSF.  相似文献   

20.
The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state 14N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that 14N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the 14N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号