共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The mammalian target of rapamycin (mTOR) is essential for skeletal myogenesis through controlling distinct cellular pathways. The importance of the canonical mTOR complex 1 signaling components, including raptor, S6K1, and Rheb, had been suggested in muscle maintenance, growth, and metabolism. However, the role of those components in myogenic differentiation is not entirely clear. In this study we have investigated the functions of raptor, S6K1, and Rheb in the differentiation of C2C12 mouse myoblasts. We find that although mTOR knockdown severely impairs myogenic differentiation as expected, the knockdown of raptor, as well as Rheb, enhances differentiation. Consistent with a negative role for these proteins in myogenesis, overexpression of raptor or Rheb inhibits C2C12 differentiation. On the other hand, neither knockdown nor overexpression of S6K1 has any effect. Moreover, the enhanced differentiation elicited by raptor or Rheb knockdown is accompanied by increased Akt activation, elevated IRS1 protein levels, and decreased Ser-307 (human Ser-312) phosphorylation on IRS1. Finally, IRS1 knockdown eliminated the enhancement in differentiation elicited by raptor or Rheb knockdown, suggesting that IRS1 is a critical mediator of the myogenic functions of raptor and Rheb. In conclusion, the Rheb-mTOR/raptor pathway negatively regulates myogenic differentiation by suppressing IRS1-PI3K-Akt signaling. These findings underscore the versatility of mTOR signaling in biological regulations and implicate the existence of novel mTOR complexes and/or signaling mechanism in skeletal myogenesis. 相似文献
6.
7.
8.
9.
10.
11.
Adler A Park YD Larsen P Nagarajan V Wollenberg K Qiu J Myers TG Williamson PR 《The Journal of biological chemistry》2011,286(23):20977-20990
12.
Xiaoli Huang Ruihua Chao Yanyang Zhang Pengxiang Wang Xueping Gong Dongli Liang Yuan Wang 《Journal of cellular and molecular medicine》2021,25(5):2377-2389
The exact molecular mechanism underlying erythroblast enucleation has been a fundamental biological question for decades. In this study, we found that miR-144/451 critically regulated erythroid differentiation and enucleation. We further identified CAP1, a G-actin-binding protein, as a direct target of miR-144/451 in these processes. During terminal erythropoiesis, CAP1 expression declines along with gradually increased miR-144/451 levels. Enforced CAP1 up-regulation inhibits the formation of contractile actin rings in erythroblasts and prevents their terminal differentiation and enucleation. Our findings reveal a negative regulatory role of CAP1 in miR-144/451-mediated erythropoiesis and thus shed light on how microRNAs fine-tune terminal erythroid development through regulating actin dynamics. 相似文献
13.
Davis-Dusenbery BN Chan MC Reno KE Weisman AS Layne MD Lagna G Hata A 《The Journal of biological chemistry》2011,286(32):28097-28110
14.
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction. 相似文献
15.
16.
17.
De Xiang Zhuo Xiao Hua Niu Yi Cheng Chen Dian Qi Xin Ying Lu Guo Ze Bin Mao 《The Journal of biological chemistry》2010,285(41):31491-31501
18.
Calderon MR Verway M An BS DiFeo A Bismar TA Ann DK Martignetti JA Shalom-Barak T White JH 《The Journal of biological chemistry》2012,287(12):8662-8674
19.
20.
Rauen T Benedyk K Juang YT Kerkhoff C Kyttaris VC Roth J Tsokos GC Tenbrock K 《The Journal of biological chemistry》2011,286(37):32366-32372