首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
5.
6.
The human immunodeficiency virus-1 (HIV-1) regulatory protein Tat plays an important role during HIV-1-associated neurocognitive disorders (HAND) by inducing neuronal autophagy. In this study, we used immunohistochemistry, immunofluorescence, western blot, qRT-PCR, and RNA interference to elucidate the involvement of Bcl-2-associated athanogene 3 (BAG3) in the pathogenesis of HIV-1 Tat-induced autophagy during HAND. We found that BAG3 expression is elevated in astrocytes in frontal cortex of macaques infected with simian immunodeficiency virus-human immunodeficiency chimeric virus (SHIV). In addition, in human primary glioblastoma cells (U87), HIV-1 Tat upregulated BAG3 in an NF-κB-dependent manner to induce autophagy. Importantly, suppression of BAG3 or inhibition of NF-κB activity reversed the HIV-1 Tat-induced autophagy. These results indicate that HIV-1 Tat induces autophagy by upregulating BAG3 via NF-κB signaling, which suggests BAG3 and NF-κB could potentially serve as novel targets for HAND therapies.  相似文献   

7.
8.
为了探讨EB病毒潜伏膜蛋白1(LMP1)的致瘤机制,对鼻咽癌中LMP1激活重要的核转录因子NF-κB机制进行了研究.首先,采用免疫共沉淀-蛋白质印迹在稳定表达LMP1的鼻咽癌细胞系HNE2-LMP1中证实LMP1与TRAF1,2,3结合形成免疫共沉淀复合物,进一步以野生型LMP1及其三种突变体的鼻咽癌细胞系LMP1(野生型,wt)、HNE2-LMP1 del187~351(CTAR1缺失型)、HNE2-LMP1(1~231)(CTAR2缺失型)、HNE2-LMP1(1~187)(羧基端胞浆区缺失型)、HNE2-pSG5(空白载体型)为材料,结合NF-κB报道基因质粒(pGL2-NF-κB-luc)的荧光素酶活性表达分析NF-κB的活性,证实:较之母细胞, 野生型LMP1活化NF-κB达13.8倍, LMP1(1~187)几乎不活化NF-κB,LMP1(1~231)活化NF-κB达4.9倍, LMP1(del187~351)活化NF-κB达9.1倍;TRAF1过表达升高LMP1(wt)及LMP1(1~231)介导的NF-κB活性,而对LMP1(del 187~351)活化NF-κB无影响;TRAF3过表达或TRAF3负显性突变体抑制LMP1(wt)及LMP1(1~231)介导的NF-κB活性,而不影响LMP1(del 187~351)活化NF-κB; TRAF2过表达升高LMP1(wt)、LMP1 (1~231)及LMP1(del 187~351)介导的NF-κB活性.这些结果表明:鼻咽癌中LMP1通过TRAF1、TRAF2或TRAF3调控NF-κB,TRAF1和TRAF3主要通过CTAR1发挥作用,TRAF2的作用主要是通过CTAR1和CTAR2介导的.  相似文献   

9.
10.
11.
12.
13.
14.
Lysophospholipids regulate a wide array of biological processes including apoptosis and neutrophil migration. Fas/Apo-1 and its ligand (FasL) participate in neuronal cell apoptosis causing various neurological diseases. Here, we use hippocampal neuroprogenitor cells to investigate how lysophosphatidylcholine (LPC) induces apoptosis in H19-7 hippocampal progenitor cells via Fas/Fas ligand-mediated apoptotic signaling pathway. Exposed cells with LPC presented on apoptotic morphology, positive TUNEL staining, and DNA fragmentation. We found that the expression of FasL was increased after LPC treatment. Furthermore, LPC-induced H19-7 cell apoptosis was decreased by agonistic anti-FasL antibody. In addition to promotion of caspase cascade activity by LPC, the administration of the caspase inhibitor, DEVD-fmk, prevented H19-7 cell apoptosis. LPC also increased the activation of nuclear factor-κB (NF-κB), which in turn, significantly increased FasL mRNA level. The increase in FasL mRNA level by NF-κB transfection was significantly decreased in the presence of IκB-SR, a super-repressor of IκB. Taken together, these results demonstrate that LPC has the ability to induce apoptosis in H19-7 cells through the upregulation of FasL expression via NF-κB activation.  相似文献   

15.
The IκB kinase/NF-κB signaling pathway has been implicated in the pathogenesis of several inflammatory diseases. Increased activation of NF-κB is often detected in both immune and non-immune cells in tissues affected by chronic inflammation, where it is believed to exert detrimental functions by inducing the expression of proinflammatory mediators that orchestrate and sustain the inflammatory response and cause tissue damage. Thus, increased NF-κB activation is considered an important pathogenic factor in many acute and chronic inflammatory disorders, raising hopes that NF-κB inhibitors could be effective for the treatment of inflammatory diseases. However, ample evidence has accumulated that NF-κB inhibition can also be harmful for the organism, and in some cases trigger the development of inflammation and disease. These findings suggested that NF-κB signaling has important functions for the maintenance of physiological immune homeostasis and for the prevention of inflammatory diseases in many tissues. This beneficial function of NF-κB has been predominantly observed in epithelial cells, indicating that NF-κB signaling has a particularly important role for the maintenance of immune homeostasis in epithelial tissues. It seems therefore that NF-κB displays two faces in chronic inflammation: on the one hand increased and sustained NF-κB activation induces inflammation and tissue damage, but on the other hand inhibition of NF-κB signaling can also disturb immune homeostasis, triggering inflammation and disease. Here, we discuss the mechanisms that control these apparently opposing functions of NF-κB signaling, focusing particularly on the role of NF-κB in the regulation of immune homeostasis and inflammation in the intestine and the skin.  相似文献   

16.
17.
Selenium (Se) is essential for human health. Despite evidence that Se intake affects inflammatory responses, the mechanisms by which Se and the selenoproteins modulate inflammatory signalling, especially in the gut, are not yet defined. The aim of this work was to assess effects of altered Se supply and knock-down of individual selenoproteins on NF-κB activation in gut epithelial cells. Caco-2 cells were stably transfected with gene constructs expressing luciferase linked either to three upstream NF-κB response elements and a TATA box or only a TATA box. TNFα and flagellin activated NF-κB-dependent luciferase activity and increased IL-8 expression. Se depletion decreased expression of glutathione peroxidase1 (GPX1) and selenoproteins H and W and increased TNFα-stimulated luciferase activity, endogenous IL-8 expression and reactive oxygen species (ROS) production. These effects were not mimicked by independent knock-down of either GPX1, selenoprotein H or W; indeed, GPX1 knock-down lowered TNFα-induced NF-κB activation and did not affect ROS levels. GPX4 knock-down decreased NF-κB activation by flagellin but not by TNFα. We hypothesise that Se depletion alters the pattern of expression of multiple selenoproteins that in turn increases ROS and modulates NF-κB activation in epithelial cells, but that the effect of GPX1 knock-down is ROS-independent.  相似文献   

18.
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear.Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells.Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号