首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mga is a DNA-binding protein that activates expression of several important virulence genes in the group A streptococcus (GAS), including those encoding M protein (emm), C5a peptidase (scpA) and Mga (mga). To determine the functionality of four potential helix-turn-helix DNA-binding motifs (HTH1-HTH4) identified within the amino-terminus of Mga, alanine substitutions were introduced within each domain in a MBP-Mga fusion allele and purified proteins were assayed for binding to Mga-specific promoter fragments (Pmga, PscpA and Pemm) in vitro. Although HTH-1 and HTH-2 mutations showed wild type DNA-binding activity, an altered HTH-3 domain resulted in reduced binding to the three promoters and an HTH-4 mutant was devoid of detectable binding activity. Plasmid-encoded expression of the HTH-3 and HTH-4 alleles from a constitutive promoter (Pspac) in the mga-deleted GAS strain JRS519 demonstrated that Mga-regulated emm expression correlated directly to the DNA-binding activity observed for each mutant protein in vitro. Single-copy expression of HTH-3 and HTH-4 from their native Pmga resulted in a dramatic reduction in autoregulated mga expression in both mutant strains. Thus, Mga appears to contain two DNA-binding domains (HTH-3 and HTH-4) that are required for direct activation of the Mga virulence regulon in vivo.  相似文献   

4.
5.
6.
7.
8.
The Mga virulence regulon: infection where the grass is greener   总被引:3,自引:0,他引:3  
Co-ordinate regulation of virulence gene expression in response to different host environments is central to the success of the group A streptococcus (GAS, Streptococcus pyogenes) as an important human pathogen. Mga represents a ubiquitous stand-alone virulence regulator that controls genes (Mga regulon) whose products are necessary for adherence, internalization and host immune evasion. Mga highly activates a core set of virulence genes, including its own gene, by directly binding to their promoters. Yet, Mga also influences expression of over 10% of the GAS genome, primarily genes and operons involved in metabolism and sugar utilization. Expression of the Mga regulon is influenced by conditions that signify favourable growth conditions, presumably allowing GAS to take advantage of promising new niches in the host. The ability of Mga to respond to growth signals clearly involves regulation of mga expression via global regulatory networks such as RALPs, Rgg/RopB and the catabolite control protein CcpA. However, the presence of predicted PTS regulatory domains (PRDs) within Mga suggests an intriguing model whereby phosphorylation of Mga by the PTS phosphorelay might link growth and sugar utilization with virulence in GAS. As Mga homologues have been found in several important Gram-positive pathogens, the Mga regulon could provide a valuable paradigm for increasing our understanding of global virulence networks in bacteria.  相似文献   

9.
10.
We have constructed a regulated plasmid vector for Streptococcus pneumoniae, based on the streptococcal broad-host-range replicon pLS1. As a reporter gene, we subcloned the gfp gene from Aequorea victoria, encoding the green fluorescent protein. This gene was placed under the control of the inducible P(M) promoter of the S. pneumoniae malMP operon which, in turn, is regulated by the product of the pneumococcal malR gene. Binding of MalR protein to the P(M) promoter is inactivated by growing the cells in maltose-containing media. Highly regulated gene expression was achieved by cloning in the same plasmid the P(M)-gfp cassette and the malR gene, thus providing the MalR regulator in cis. Pneumococcal cells harboring this vector gave a linear response of GFP synthesis in a maltose-dependent mode without detectable background levels in the absence of the inducer.  相似文献   

11.
There is considerable evidence that phase variation among transparent and opaque colony phenotypes of Streptococcus pneumoniae (Spn) plays an important role in the pneumococcal adherence and invasion. The current study was designed to investigate the interactions of the opacity phenotype variants of Spn with specific complement pathway activation in a mouse model of acute otitis media (AOM). Although the opaque colony phenotype was expected to be more resistant to complement mediated killing compared to the transparent Spn variant, we discovered that C3b deposition on the transparent Spn is, in large part, dependent on the alternative pathway activation. There were no significant differences in resistance to complement mediated opsonophagocytosis between the two variants in factor B deficient mice. In addition, an in vitro study demonstrated that significantly more C4b-binding protein (C4BP) (the classical pathway inhibitor) and factor H (FH) (the alternative pathway inhibitor) bound to the transparent strain compared with the opaque one. Our data suggest that the difference in the relative virulence of Spn opacity phenotypes is associated with its ability to evade complement-mediated opsonophagocytosis in a mouse model of pneumococcal AOM.  相似文献   

12.
13.
14.
15.
16.
Toxin-antitoxin loci belonging to the yefM-yoeB family are located in the chromosome or in some plasmids of several bacteria. We cloned the yefM-yoeB locus of Streptococcus pneumoniae, and these genes encode bona fide antitoxin (YefM(Spn)) and toxin (YoeB(Spn)) products. We showed that overproduction of YoeB(Spn) is toxic to Escherichia coli cells, leading to severe inhibition of cell growth and to a reduction in cell viability; this toxicity was more pronounced in an E. coli B strain than in two E. coli K-12 strains. The YoeB(Spn)-mediated toxicity could be reversed by the cognate antitoxin, YefM(Spn), but not by overproduction of the E. coli YefM antitoxin. The pneumococcal proteins were purified and were shown to interact with each other both in vitro and in vivo. Far-UV circular dichroism analyses indicated that the pneumococcal antitoxin was partially, but not totally, unfolded and was different than its E. coli counterpart. Molecular modeling showed that the toxins belonging to the family were homologous, whereas the antitoxins appeared to be specifically designed for each bacterial locus; thus, the toxin-antitoxin interactions were adapted to the different bacterial environmental conditions. Both structural features, folding and the molecular modeled structure, could explain the lack of cross-complementation between the pneumococcal and E. coli antitoxins.  相似文献   

17.
18.
19.
20.
In infection by Streptococcus pyogenes, fibronectin (Fn)-binding proteins play important roles as adhesins and invasins. Here, we present a novel Fn-binding protein of S. pyogenes that exhibits a low similarity to other Fn-binding proteins reported. After searching the Oklahoma Streptococcal Genome Sequencing Database for open reading frames (ORFs) with an LPXTG motif, nine ORFs were found among those recognized as putative surface proteins, and one of them was designated as Fba. The fba gene was found in M types 1, 2, 4, 22, 28 and 49 of S. pyogenes, but not in other serotypes or groups of streptococci. Fba, a 37.8 kDa protein, possesses three or four proline-rich repeat domains and exhibits a high homology to FnBPA, the Fn-binding protein of Staphylococcus aureus. Recombinant Fba exhibited a strong binding ability to Fn. In addition, Fba-deficient mutants showed diminished invasive capabilities to HEp-2 cells and low mortality in mice following skin infection. The fba gene was located downstream of the mga regulon and analysis using an mga-inactivated mutant revealed that it was transcribed under the control of the Mga regulator. These results indicate that Fba is a novel protein and one of the important virulence factors of S. pyogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号