首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we use DGGE fingerprinting and barcoded pyrosequencing data, at six cut-off levels (85-100%), of all bacteria, Alphaproteobacteria and Betaproteobacteria to assess composition in the rhizosphere of nursery plants and nursery-raised transplants, native plants and bulk sediment in a mangrove habitat. When comparing compositional data based on DGGE fingerprinting and barcoded pyrosequencing at different cut-off levels, all revealed highly significant differences in composition among microhabitats. Procrustes superimposition revealed that ordination results using cut-off levels from 85-100% and DGGE fingerprint data were highly congruent with the standard 97% cut-off level. The various approaches revealed a primary gradient in composition from nursery to mangrove samples. The affinity between the nursery and transplants was greatest when using Betaproteobacteria followed by Alphaproteobacteria data. There was a distinct secondary gradient in composition from transplants to bulk sediment with native plants intermediate, which was most prevalent using all bacteria at intermediate cut-off levels (92-97%). Our results show that PCR-DGGE provides a robust and cost effective exploratory approach and is effective in distinguishing among a priori defined groups.  相似文献   

2.

Background

Mangrove forests are of global ecological and economic importance, but are also one of the world''s most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants.

Methodology/Principal Findings

A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment.

Conclusions/Significance

In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments.  相似文献   

3.
Municipal sewage, urban runoff and accidental oil spills are common sources of pollutants in urban mangrove forests and may have drastic effects on the microbial communities inhabiting the sediment. However, studies on microbial communities in the sediment of urban mangroves are largely lacking. In this study, we explored the diversity of bacterial communities in the sediment of three urban mangroves located in Guanabara Bay (Rio de Janeiro, Brazil). Analysis of sediment samples by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments suggested that the overall bacterial diversity was not significantly affected by the different levels of hydrocarbon pollution at each sampling site. However, DGGE and sequence analyses provided evidences that each mangrove sediment displayed a specific structure bacterial community. Although primer sets for Pseudomonas, alphaproteobacterial and actinobacterial groups also amplified ribotypes belonging to taxa not intended to be enriched, sequence analyses of dominant DGGE bands revealed ribotypes related to Alteromonadales, Burkholderiales, Pseudomonadales, Rhodobacterales and Rhodocyclales. Members of these groups were often shown to be involved in aerobic or anaerobic degradation of hydrocarbon pollutants. Many of these sequences were only detected in the sampling sites with high levels of anthropogenic inputs of hydrocarbons. Many dominant DGGE ribotypes showed low levels of sequence identity to known sequences, indicating a large untapped bacterial diversity in mangrove ecosystems.  相似文献   

4.
ABSTRACT: BACKGROUND: Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. RESULTS: Mangrove sediment was sampled from 0--5, 15--20 and 35--40 cm depth intervals from the Surui River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. CONCLUSIONS: Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0--5 cm) being greater than in both deeper sediment layers (15--20 and 35--40 cm), which were similar to each other.  相似文献   

5.
The cyanobacterial community colonizing phyllosphere in a well-preserved Brazilian mangrove ecosystem was assessed using cultivation-independent molecular approaches. Leaves of trees that occupy this environment (Rhizophora mangle,Avicennia schaueriana and Laguncularia racemosa) were collected along a transect beginning at the margin of the bay and extending upland. The results demonstrated that the phyllosphere of R. mangle and L. racemosa harbor similar assemblages of cyanobacteria at each point along the transect. A. schaueriana, found only in the coastal portions of the transect, was colonized by assemblages with lower richness than the other trees. However, the results indicated that spatial location was a stronger driver of cyanobacterial community composition than plant species. Distinct cyanobacterial communities were observed at each location along the coast-to-upland transect. Clone library analysis allowed identification of 19 genera of cyanobacteria and demonstrated the presence of several uncultivated taxa. A predominance of sequences affiliated with the orders Nostocales and Oscillatoriales was observed, with a remarkable number of sequences similar to genera Symphyonemopsis/Brasilonema (order Nostocales). The results demonstrated that phyllosphere cyanobacteria in this mangrove forest ecosystem are influenced by environmental conditions as the primary driver at the ecosystem scale, with tree species exerting some effect on community structure at the local scale.  相似文献   

6.
Six plant associations were identified at Gandoca Lagoon by photointerpretation and field verification: a) mangroves, b) palm trees swamp, and palm trees with Acrostichum aureum and A. danaefolium, c) mixed palm trees, d) very humid tropical rain forest, and e) tropical beach vegetation. The mangroves cover 12.5 ha surrounding the lagoon and extend 2 km up the Gandoca River. Rhizophora mangle (red mangrove) was the dominant species, with Avicennia germinans (black mangrove), Laguncularia racemosa (white mangrove) and Conocarpus erectus (buttonwood) also present. Moving inland the mangroves grade into a tropical rain forest. Gandoca, the largest and best preserved mangrove of Caribbean Costa Rica, tripled its area from 1976 to 2000. Possible causes include sedimentation and the Limón earthquake, which may have subside the lagoon area.  相似文献   

7.
The microbial community plays an essential role in the high productivity in mangrove wetlands. A proper understanding of the spatial variations of microbial communities will provide clues about the underline mechanisms that structure microbial groups and the isolation of bacterial strains of interest. In the present study, the diversity and composition of the bacterial community in sediments collected from four locations, namely mudflat, edge, bulk, and rhizosphere, within the Mai Po Ramsar Wetland in Hong Kong, SAR, China were compared using the barcoded Illumina paired-end sequencing technique. Rarefaction results showed that the bulk sediment inside the mature mangrove forest had the highest bacterial α-diversity, while the mudflat sediment without vegetation had the lowest. The comparison of β-diversity using principal component analysis and principal coordinate analysis with UniFrac metrics both showed that the spatial effects on bacterial communities were significant. All sediment samples could be clustered into two major groups, inner (bulk and rhizosphere sediments collected inside the mangrove forest) and outer mangrove sediments (the sediments collected at the mudflat and the edge of the mangrove forest). With the linear discriminate analysis scores larger than 3, four phyla, namely Actinobacteria, Acidobacteria, Nitrospirae, and Verrucomicrobia, were enriched in the nutrient-rich inner mangrove sediments, while abundances of Proteobacteria and Deferribacterias were higher in outer mangrove sediments. The rhizosphere effect of mangrove plants was also significant, which had a lower α-diversity, a higher amount of Nitrospirae, and a lower abundance of Proteobacteria than the bulk sediment nearby.  相似文献   

8.
Archaeal 16S rRNA gene sequences have been found in a variety of moderate-temperature habitats including soil and rhizospheres. In this study, the differences of archaeal communities associated with Scots pine (Pinus sylvestris L.) short roots, different types of mycorrhizospheric compartments, and uncolonized boreal forest humus were tested by direct DNA extraction, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE), and sequencing. The results indicated that mycorrhizal colonization of Scots pine roots substantially influence the archaeal community of pine rhizospheres. Colonization of short roots by most mycorrhizal fungi tested increased both archaeal frequency and diversity. Most of the archaeal sequences encountered in mycorrhizas belonged to the phylum Euryarchaeota, order of Halobacteriales. The difference in archaeal diversity between the mycorrhizospheric compartments and humus was profound. Most compartments with fungal components contained euryarchaeotal 16S rRNA gene sequences, whereas a high diversity of crenarchaeotal sequences and no euryarchaeotal sequences were found in forest humus outside mycorrhizospheres.  相似文献   

9.
Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves.  相似文献   

10.
We registered seedling survival and biomass increase for Rhizophora mangle L., Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. f, main mangrove species in the Rancheria River delta, Colombia. Only seedlings of R. mangle were found to survive. We also measured maximum rate of litterfall. We estimated annual litterfall through interpolation within an exponential regression performed with maximum and annual litterfall data published in other sources; the value of annual litterfall for the area was estimated to be 12.9 mgha(-1)y(-1). We found a 7.4 mgha(-1)y(-1)(-1) increase in biomass. Litterfall constitutes the larger fraction of the 20.2 mgha(-1)y(-1) productivity of this mangrove. We believe this is a very high value for a forest under unfavorable natural and human conditions, such as high seasonality and continuous use of the forest to feed goats and sheep. We consider that the high productivity is a response to both natural and anthropogenic stress.  相似文献   

11.
12.
Plant community composition can impact ecosystem processes via litter feedbacks. Species variation in litter quality may generate different patterns of nutrient supply for plants that are dependent on litter inputs. However, it is not known whether plants grow faster in their own litter, litter from other species, or in litter mixtures from multiple species. To test whether litter identity and mixture status influenced mangrove seedling growth, biomass allocation, and stoichiometry, we performed mesocosm experiments. Two species of mangrove seedlings, Avicennia germinans, black mangrove and Rhizophora mangle, red mangrove, were exposed to all possible combinations of three mangrove litter types and were isolated from all other nutrient inputs. Litter treatments significantly altered seedling growth. Seedlings from both mangrove species grew most rapidly in litter from a different species rather than their own, irrespective of litter chemical quality, decomposition rate, and nitrogen release. Litter mixtures from white and black mangroves caused black mangroves to grow 65% more than expected. Litter treatments did not impact seedling root:shoot ratios or tissue C:N. Our finding that seedlings grow best in litter from other species may indicate a mechanism that helps sustain the coexistence of dominant species.  相似文献   

13.
Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves.  相似文献   

14.
Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.  相似文献   

15.
Freshwater lake sediments support a variety of submerged macrophytes that may host groups of bacteria exerting important ecological functions. We collected three kinds of commonly found submerged macrophyte species (Ceratophyllum demersum, Vallisneria spiralis and Elodea nuttallii) to investigate the bacterial community associated with their rhizosphere sediments. High-throughput 454 pyrosequencing and bioinformatics analyses were performed to examine the diversity and composition of the bacterial community. The results obtained indicated that the diversity of the bacterial community associated with the rhizosphere sediments of submerged macrophytes was significantly lower than that of the bulk sediment. Remarkable differences in the bacterial community composition between the rhizosphere and bulk sediments were also observed.  相似文献   

16.
The distribution of the archaeal communities in deep subseafloor sediments [0–36 m below the seafloor (mbsf)] from the New Caledonia and Fairway Basins was investigated using DNA- and RNA-derived 16S rRNA clone libraries, functional genes and denaturing gradient gel electrophoresis (DGGE). A new method, Co-Migration DGGE (CM-DGGE), was developed to access selectively the active archaeal diversity. Prokaryotic cell abundances at the open-ocean sites were on average ∼3.5 times lower than at a site under terrestrial influence. The sediment surface archaeal community (0–1.5 mbsf) was characterized by active Marine Group 1 (MG-1) Archaea that co-occurred with ammonia monooxygenase gene ( amoA ) sequences affiliated to a group of uncultured sedimentary Crenarchaeota . However, the anoxic subsurface methane-poor sediments (below 1.5 mbsf) were dominated by less active archaeal communities, such as the Thermoplasmatales , Marine Benthic Group D and other lineages probably involved in the methane cycle ( Methanosarcinales , ANME-2 and DSAG/MBG-B). Moreover, the archaeal diversity of some sediment layers was restricted to only one lineage (Uncultured Euryarchaeota , DHVE6, MBG-B, MG-1 and SAGMEG). Sequences forming two clusters within the Thermococcales order were also present in these cold subseafloor sediments, suggesting that these uncultured putative thermophilic archaeal communities might have originated from a different environment. This study shows a transition between surface and subsurface sediment archaeal communities.  相似文献   

17.
Sengupta A  Chaudhuri S 《Mycorrhiza》2002,12(4):169-174
Mangroves are climax formation of hydrohalophytes inhabiting estuarine or marine salt marshes in the tropics and subtropics. As a terrestrial plant community inhabiting tidally inundated estuarine or marine sediments, mangroves show considerable adaptation to salinity, water-logging and nutrient stress. Thirty-one species of mangrove and mangrove associates and 23 species of transported flora, belonging to 25 families at four physiographic stages of succession of the mangrove plant community at the terminal part of the Ganges river estuary in India were examined for arbuscular mycorrhizal (AM) root association. Dominant members of the mangrove plant community were all AM, mostly with 'Paris' type structures. Many of the known non-mycotrophic plant families, except the Cyperaceae, also showed AM association, with intracellular hyphae and vesicles as the most discernible endophyte structures. Intensity of AM colonization varied both with the species and situations of their occurrence, being more intense and also more extensive in less saline dry ridge mangroves than in more saline formative and developed swamp mangroves. Introduced exotic trees on the ridges and embankments were infected by AM, but less than the declining mangroves in the same location. Seven species of AM fungi in common with those of the upstream mesophytic plants were isolated from root-free rhizosphere soils of the mangroves, three of which predominated in root association. These species, individually and as mixtures, infected roots of salinity tolerant herbs and trees in both locational silt and upstream alluvial soil with obvious improvements in their biomass yield and phosphorus nutrition. AM infective potential of root-free rhizosphere soils of the dominant members of the mangrove community were negatively related to salinity level of the sediment soil of the successional stages. The evidences of AM association of mangroves and other salt marsh plants obtained here and those reported elsewhere are discussed.  相似文献   

18.
真菌多样性是植物根际生态系统的重要构成与植物健康稳定的重要指标。海桑属是红树林的先锋物种,采用真菌ITS1区高通量测序方法,分析了六种海桑属红树根际真菌的组成和多样性,结合土壤理化性质探讨影响不同植物根际真菌群落组成差异的因素。结果显示,根际真菌隶属于7门、96科、155属,子囊菌门作为优势菌门在海桑属不同红树中相对丰度无显著差异,都超过27%,但次优势的担子菌门丰度含量有差异;属水平上,优势菌属的丰度含量不同,曲霉属在卵叶海桑的丰度最高(29.57%),在海南海桑最低(3.47%)。六种红树植物根际存在特有的代表类群,如无瓣海桑的马拉色菌(9.31%)和毛腐菌属(10.05%),海南海桑中的Talaromyces(19.61%)和Acremonium(13.58%)。比较多样性指数Simpson和Shannon,发现拟海桑是六种植物中丰度最高的,卵叶海桑最低。RDA分析发现子囊菌门与全磷含量呈显著负相关,担子菌门与速效钾呈明显正相关。六种海桑属红树植物根际核心物种分析表明,优势真菌类群曲霉属和一些低丰度的真菌类群,通过降解有机质参与碳循环,对根际土壤生态系统的稳定起重要作用。六种海桑...  相似文献   

19.
In this study, a Paenibacillus-specific PCR system, based on the specific primer PAEN515F in combination with bacterial primer R1401, was tested and used to amplify specific fragments of the 16S rRNA gene from rhizosphere DNA. The amplicons were used in a second (semi-nested) PCR for DGGE, in which bacterial primers F968GC and R1401 were used. The resulting products were separated into community fingerprints by DGGE. To assess the reliability of the method, the diversity of Paenibacillus species was evaluated on the basis of DNA extracted directly from the rhizospheres of four different cultivars of maize (Zea mays), i.e. CMS04, CMS11, CMS22 and CMS36, sown in two Brazilian field soils (Cerrado and Várzea). In addition, a clone library was generated from the PCR-generated 16S rDNA fragments, and selected clones were sequenced.The results of the bacterial community analyses showed, at the level of clone libraries, that considerable diversity among Paenibacillus spp. was present. The most dominantly found sequences clustered into 12 groups, each one potentially representing a species complex. Sequences closely affiliated with the P. macerans and P. azotofixans complexes were found in all samples, whereas other sequences were scarcer. Clones affiliated with the latter species complex were most abundant, representing 19% of all clones analysed.The Paenibacillus fingerprints generated via semi-nested PCR followed by DGGE showed a clear distinction between the maize plants grown in Cerrado versus Várzea soils. Thus, soil type, instead of maize cultivar type, was the overriding determinative factor that influenced the community structures of the Paenibacillus communities in the rhizospheres investigated. At a lower level (subcluster), there was a trend for maize cultivars CMS11 and CMS22 on the one hand, and CMS36 and CMS04 on the other hand, to cluster together, indicating that these respective pair of cultivars were similar in their Paenibacillus species composition. This trend was tentatively linked to the growth characteristics of these maize cultivars. These results clearly demonstrated the efficacy of the Paenibacillus-specific PCR-DGGE method in describing Paenibacillus species diversity in rhizosphere soils.  相似文献   

20.
Anchialine lakes are a globally rare and unique ecosystem consisting of saline lakes surrounded by land and isolated from the surrounding marine environment. These lakes host a unique flora and fauna including numerous endemic species. Relatively few studies have, however, studied the prokaryote communities present in these lakes and compared them with the surrounding ‘open water’ marine environment. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach to examine prokaryote (Bacteria and Archaea) composition in three distinct biotopes (sediment, water and the mussel Brachidontes sp.) inhabiting four habitats, namely, three marine lakes and the surrounding marine environment of Berau, Indonesia. Biotope and habitat proved significant predictors of variation in bacterial and archaeal composition and higher taxon abundance. Most bacterial sequences belonged to OTUs assigned to the Proteobacteria. Compared to sediment and water, mussels had relatively high abundances of the classes Mollicutes and Epsilonproteobacteria. Most archaeal sequences, in turn, belonged to OTUs assigned to the Crenarchaeota with the relative abundance of crenarchaeotes highest in mussel samples. For both Bacteria and Archaea, the main variation in composition was between water samples on the one hand and sediment and mussel samples on the other. Sediment and mussels also shared much more OTUs than either shared with water. Abundant bacterial OTUs in mussels were related to organisms previously obtained from corals, oysters and the deepsea mussel Bathymodiolus manusensis. Abundant archaeal OTUs in mussels, in contrast, were closely related to organisms previously obtained from sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号