首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GLP-1R (glucagon-like peptide-1 receptor) mediates the ‘incretin effect’ and many other anti-diabetic actions of its cognate ligand, GLP-1 (glucagon-like peptide-1). It belongs to the class B family of GPCRs (G protein-coupled receptors) and possesses an N-terminal putative SP (signal peptide). It has been reported that this sequence is required for the synthesis of GLP-1R and is cleaved after receptor synthesis. In the present study, we conducted an in-depth exploration towards the role of the putative SP in GLP-1R synthesis. A mutant GLP-1R without this sequence was expressed in HEK293 cells (human embryonic kidney 293 cells) and displayed normal functionality with respect to ligand binding and activation of adenylate cyclase. Thus the putative SP does not seem to be required for receptor synthesis. Immunoblotting analysis shows that the amount of GLP-1R synthesized in HEK293 cells is low when the putative SP is absent. This indicates that the role of the sequence is to promote the expression of GLP-1R. Furthermore, epitopes tagged at the N-terminal of GLP-1R are detectable by immunofluorescence and immunoblotting in our experiments. In conclusion, the present study points to different roles of SP in GLP-1R expression which broadens our understanding of the functionality of this putative SP of GLP-1R and possibly other Class B GPCRs.  相似文献   

2.
Steiner S  Muff R  Gujer R  Fischer JA  Born W 《Biochemistry》2002,41(38):11398-11404
Three receptor-activity-modifying proteins (RAMP) define specific interactions between calcitonin (CT) gene-related peptide (CGRP), adrenomedullin (AM) and amylin, and a CT receptor or a CT receptor-like receptor (CRLR). Both form heterodimeric RAMP/receptor complexes at the cell surface. This association represents a novel principle of G protein-coupled receptor function. RAMP1 is transported to the cell surface together with the CRLR or the CT receptor. Here, we have investigated the functional relevance of the short C-terminal intracellular tail QSKRTEGIV and of the single transmembrane domain of human (h) RAMP1 for their interactions with the hCRLR to constitute a CGRP receptor. To this end, hRAMP1 has been sequentially truncated from the C-terminus, and [(125)I]h alpha CGRP/hRAMP1/hCRLR association at the cell surface and cAMP accumulation in response to h alpha CGRP have been examined. With the C-terminal truncation of hRAMP1 by four amino acids wild-type hRAMP1 function was maintained, and the hCRLR was required for the transport of hRAMP1 to the cell surface. Further truncation of hRAMP1 through removal of the remaining five intracellular amino acids revealed CRLR-independent cell surface delivery but otherwise normal hRAMP1 activity. Sequential shortening of the hRAMP1 transmembrane domain resulted in progressively impaired association with the hCRLR and, as a consequence, abolished CGRP receptor function. In conclusion, the intracellular QSKRT sequence adjacent to the transmembrane domain of hRAMP1 provides a signal for intracellular retention. The sequence is unrelated to consensus endoplasmic reticulum retention/retrieval motives and overridden by the presence of the hCRLR. The entire single transmembrane domain of hRAMP1 together with one hydrophilic amino acid residue at its C-terminus is required for the formation of a fully functional CGRP/hRAMP1/hCRLR receptor complex.  相似文献   

3.
The Escherichia coli ammonia channel protein, AmtB, is a homotrimeric polytopic inner membrane protein in which each subunit has 11 transmembrane helices. We have shown that the structural gene amtB encodes a preprotein with a signal peptide that is cleaved off to produce a topology with the N-terminus in the periplasm and the C-terminus in the cytoplasm. Deletion of the signal peptide coding region results in significantly lower levels of AmtB accumulation in the membrane but modification of the signal peptidase cleavage site, leading to aberrant cleavage, does not prevent trimer formation and does not inactivate the protein. The presence of a signal peptide is apparently not a conserved feature of all prokaryotic Amt proteins. Comparison of predicted AmtB sequences suggests that while Amt proteins in Gram-negative organisms utilize a signal peptide, the homologous proteins in Gram-positive organisms do not.  相似文献   

4.
To examine the function of the amino-terminal presequence of rat peroxisomal 3-ketoacyl-CoA thiolase precursor, fusion proteins of various amino-terminal regions of the precursor with non-peroxisomal enzymes were expressed in cultured mammalian cells. On immunofluorescence microscopy, all constructs carrying the presequence part exhibited punctate patterns of distribution, identical with that of catalase, a peroxisomal marker. Proteins lacking all or a part of the prepiece were found in the cytosol. These results indicate that the presequence of the thiolase has sufficient information for peroxisomal targeting.  相似文献   

5.
Rhodobacter sphaeroides cytochrome c2 (cyt c2) is a member of the heme-containing cytochrome c protein family that is found in the periplasmic space of this gram-negative bacterium. This exported polypeptide is made as a higher-molecular-weight precursor with a typical procaryotic signal peptide. Therefore, cyt c2 maturation is normally expected to involve precursor translocation across the cytoplasmic membrane, cleavage of the signal peptide, and covalent heme attachment. Surprisingly, synthesis as a precursor polypeptide is not a prerequisite for cyt c2 maturation because deleting the entire signal peptide does not prevent export, heme attachment, or function. Although cytochrome levels were reduced about threefold in cells containing this mutant protein, steady-state cyt c2 levels were significantly higher than those of other exported bacterial polypeptides which contain analogous signal peptide deletions. Thus, this mutant protein has the unique ability to be translocated across the cytoplasmic membrane in the absence of a signal peptide. The covalent association of heme with this mutant protein also suggests that the signal peptide is not required for ligand attachment to the polypeptide chain. These results have uncovered some novel aspects of bacterial c-type cytochrome biosynthesis.  相似文献   

6.
Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1–EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor’s amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of co-enriched receptor proteins immobilized on agarose beads also detected a high FRET efficiency of 24.0%. Taken together confocal FRET imaging revealed efficient heterodimerization of co-enriched and cellular AT1/B2R, and GRK-dependent co-internalization of the AT1/B2R heterodimer.  相似文献   

7.
8.
We have previously shown that the signal sequence of the Saccharomyces cerevisiae vacuolar protein carboxypeptidase Y (CPY) does not function in mammalian cells unless a glycine residue in the central core is replaced by leucine. Additional mutants were constructed to investigate the features of this hydrophobic core (h) region that are important for signal sequence function in mammalian cells. We find that the degree of hydrophobicity of the h region of any particular mutant signal is directly related to the efficiency with which it directs the translocation of CPY. A minimal h region in a functional signal appears to consist of five hydrophobic residues interrupted by 1 glycine. Analysis of potential secondary structures suggests that a functional mutant signal is more likely than the nonfunctional CPY signal to adopt either a beta strand or an alpha-helical conformation.  相似文献   

9.
10.
The initial step of the intracellular transport of G protein-coupled receptors, their insertion into the membrane of the endoplasmic reticulum, follows one of two different pathways. Whereas one group uses the first transmembrane domain of the mature receptor as an uncleaved signal anchor sequence for this process, a second group possesses additional cleavable signal peptides. The reason this second subset requires the additional signal peptide is not known. Here we have assessed the functional significance of the signal peptide of the endothelin B (ET(B)) receptor in transiently transfected COS.M6 cells. A green fluorescent protein-tagged ET(B) receptor mutant lacking the signal peptide was nonfunctional and retained in the endoplasmic reticulum, suggesting that it has a folding defect. To determine the defect in more detail, ET(B) receptor fragments containing the N-terminal tail, first transmembrane domain, and first cytoplasmic loop were constructed. We assessed N tail translocation across the endoplasmic reticulum membrane in the presence and absence of a signal peptide and show that the signal peptide is necessary for N tail translocation. We postulate that signal peptides are necessary for those G protein-coupled receptors for which post-translational translocation of the N terminus is impaired or blocked by the presence of stably folded domains.  相似文献   

11.
We have identified a novel mitochondrial targeting signal in the precursor of the DNA helicase Hmi1p of Saccharomyces cerevisiae that is located at the C terminus of the protein. Similar to classical N-terminal presequences, this C-terminal targeting signal consists of a stretch of positively charged amino acids that has the potential to form an amphipathic alpha-helix. Deletion of the C-terminal 36 amino acids of helicase resulted in loss of import into mitochondria, while deletion of the N-terminal 40 amino acids had no effect. When C-terminal regions of the helicase were placed at the C terminus of a passenger protein, dihydrofolate reductase, the resulting fusion proteins were directed into the mitochondrial matrix, and the C-terminal region of helicase became proteolytically processed. Import of helicase occurs in a C- to N-terminal direction; it requires a membrane potential and the TIM17-23 translocase together with mitochondrial Hsp70. Helicase is the only mitochondrial matrix protein identified thus far with a cleavable targeting signal at its C terminus.  相似文献   

12.
Gene-knockout studies of melanin-concentrating hormone (MCH) and its effect on feeding and energy balance have firmly established MCH as an orexigenic (appetite-stimulating) peptide hormone. Here we identify MCH as the ligand for the orphan receptor SLC-1. The rat SLC-1 is activated by nanomolar concentrations of MCH and is coupled to the G protein G alpha i/o. The pattern of SLC-1 messenger RNA expression coincides with the distribution of MCH-containing nerve terminals and is consistent with the known central effects of MCH. Our identification of an MCH receptor could have implications for the development of new anti-obesity therapies.  相似文献   

13.
D F Soler  R B Harris 《Peptides》1989,10(1):63-68
Atrial dipeptidyl carboxyhydrolase readily converts one atrial natriuretic peptide, atriopeptin II (Ser103-Arg125 peptide), to another, atriopeptin I (Ser103-Ser123 peptide), by selective removal of the C-terminal dipeptide, Phe-Arg. The atrial peptides possess natriuretic, diuretic, smooth muscle relaxant, and cardiodynamic properties and their existence has shown the mammalian heart to be an endocrine organ. After inactivating the bovine atrial enzyme with EDTA, activity is restored by the addition of Co+2, Zn+2 and Mn+2 but not by Cu+2, Mg+2, Ca+2, or Cd+2. The enzyme is thus likely to be a zinc-metallo proteinase. In addition to its dipeptidyl activity, the enzyme also displays tripeptidyl carboxyhydrolase activity with atriopeptin III (Ser103-Try126 peptide) as substrate. The hydrolytic products resulting from tripeptidyl cleavage are atriopeptin I and Phe-Arg-Tyr. However, with [mercaptopropionyl105,(D)Ala107]-atriopeptin III-NH2 peptide (a potent agonist of atriopeptin III) as substrate, the enzyme acts exclusively as a tripeptidyl carboxyhydrolase. To examine the basis for this shift in cleavage point, pentapeptides based on the C-terminal sequence of atriopeptin III were prepared; a C-terminal Tyr or Tyr-NH2 residue is not sufficient to cause the change in cleavage point. The amidated pentapeptide is not a substrate but is a competitive inhibitor of hydrolysis of the corresponding free-acid peptide.  相似文献   

14.
Bielsky IF  Hu SB  Ren X  Terwilliger EF  Young LJ 《Neuron》2005,47(4):503-513
Vasopressin modulates many social and nonsocial behaviors, including emotionality. We have previously reported that male mice with a null mutation in the V1a receptor (V1aR) exhibit a profound impairment in social recognition and changes in anxiety-like behavior. Using site-specific injections of a V1aR-specific antagonist, we demonstrate that the lateral septum, but not the medial amygdala, is critical for social recognition. Reexpressing V1aR in the lateral septum of V1aR knockout mice (V1aRKO) using a viral vector resulted in a complete rescue of social recognition. Furthermore, overexpression of the V1aR in the lateral septum of wild-type (wt) mice resulted in a potentiation of social recognition behavior and a mild increase in anxiety-related behavior. These results demonstrate that the V1aR in the lateral septum plays a critical role in the neural processing of social stimuli required for complex social behavior.  相似文献   

15.
FliP is a rare bacterial polytopic membrane protein synthesized with a cleavable highly hydrophobic signal peptide. It is essential for flagellum assembly and for bacterial motility. In this study, we assessed specificity of signal peptide for the FliP function. Like the wild type FliP, two altered FliPs with more hydrophilic Tat- or Sec-dependent signal peptides were both able to restore the motility of the DeltafliP mutant. Therefore, the Tat- and the Sec-dependent signal peptides seemed to be compatible with the FliP function. Moreover, deletion of the FliP signal peptide or replacing it with the transmembrane segment of MotA severely impaired the FliP function. Together these results showed that a cleavable signal peptide is required for the full function of FliP.  相似文献   

16.
The protease-activated receptor 1 (PAR1) is a G-protein-coupled receptor that is irreversibly activated by either thrombin or metalloprotease 1. Due this irrevocable activation, activated internalization and degradation are critical for PAR1 signaling termination. Prohibitin (PHB) is an evolutionarily conserved, ubiquitously expressed, pleiotropic protein and belongs to the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain family. In a previous study, we found that PHB localized on the platelet membrane and participated in PAR1-mediated human platelet aggregation, suggesting that PHB likely regulates the signaling of PAR1. Unfortunately, PHB's exact function in PAR1 internalization and degradation is unclear. In the current study, flow cytometry revealed that PHB expressed on the surface of endothelial cells (HUVECs) but not cancer cells (MDA-MB-231). Further confocal microscopy revealed that PHB dynamically associates with PAR1 in a time-dependent manner following induction with PAR1-activated peptide (PAR1-AP), though differently between HUVECs and MDA-MB-231 cells. Depletion of PHB by RNA interference significantly inhibited PAR1 activated internalization and led to sustained Erk1/2 phosphorylation in the HUVECs; however, a similar effect was not observed in MDA-MB-231 cells. For both the endothelial and cancel cells, PHB repressed PAR1 degradation, while knockdown of PHB led to increased PAR1 degradation, and PHB overexpression inhibited PAR1 degradation. These results suggest that persistent PAR1 signaling due to the absence of membrane PHB and decreased PAR1 degradation caused by the upregulation of intracellular PHB in cancer cells (such as MDA-MB-231 cells) may render cells highly invasive. As such, PHB may be a novel target in future anti-cancer therapeutics, or in more refined cancer malignancy diagnostics.  相似文献   

17.
The life cycle of calicivirus is not fully understood because most of the viruses cannot be propagated in tissue culture cells. We studied the mechanism of calicivirus entry into cells using feline calicivirus (FCV), a cultivable calicivirus. From the cDNA library of Crandell-Rees feline kidney (CRFK) cells, feline junctional adhesion molecule 1 (JAM-1), an immunoglobulin-like protein present in tight junctions, was identified as a cellular-binding molecule of the FCV F4 strain, a prototype strain in Japan. Feline JAM-1 expression in nonpermissive hamster lung cells led to binding and infection by F4 and all other strains tested. An anti-feline JAM-1 antibody reduced the binding of FCV to permissive CRFK cells and strongly suppressed the cytopathic effect (CPE) and FCV progeny production in infected cells. Some strains of FCV, such as F4 and F25, have the ability to replicate in Vero cells. We found that regardless of replication ability, FCV bound to Vero and 293T cells via simian and human JAM-1, respectively. In Vero cells, an anti-human JAM-1 antibody inhibited binding, CPE, and progeny production by F4 and F25. In addition, feline JAM-1 expression permitted FCV infection in 293T cells. Taken together, our results demonstrate that feline JAM-1 is a functional receptor for FCV, simian JAM-1 also functions as a receptor for some strains of FCV, and the interaction between FCV and JAM-1 molecules may be a determinant of viral tropism. This is the first report concerning a functional receptor for the viruses in the family Caliciviridae.  相似文献   

18.
The G protein-coupled thrombin receptor, protease-activated receptor 1 (PAR1), mediates many of the actions of thrombin on cells including chemotaxis. In contrast to the reversible agonist binding that regulates signaling by most G protein-coupled receptors (GPCRs), PAR1 is activated by an irreversible proteolytic mechanism. Although activated PAR1 is phosphorylated, uncoupled, and internalized like typical GPCRs, signal termination is additionally dependent on lysosomal degradation of cleaved and activated receptors. In the present study we exploit two PAR1 mutants to examine the link between chemotaxis and receptor shutoff. One, a carboxyl tail deletion mutant (Y397Z), is defective in phosphorylation and internalization. The other, a carboxyl tail chimeric receptor (P/S), is phosphorylated and internalized upon activation but recycles to the plasma membrane like reversibly activated GPCRs. Expression of these receptors in a hematopoietic cell line disrupted cell migration along thrombin gradients. Thrombin activation of cells expressing P/S or Y397Z resulted in persistent signaling independent of the continued presence of thrombin. Signaling in response to the soluble agonist peptide SFLLRN was reversible for P/S but persisted for Y397Z. Strikingly, cells expressing P/S responded chemokinetically to thrombin but chemotactically to SFLLRN. In contrast, Y397Z-mediated migration was largely chemokinetic to both agonists. These studies suggest that termination of PAR1 signaling at the level of the receptor is necessary for gradient detection and directional migration.  相似文献   

19.
Expression of human GLVR1 in mouse cells confers susceptibility to infection by gibbon ape leukemia virus (GALV), while the normally expressed mouse Glvr-1 does not. Since human and murine GLVR1 proteins differ at 64 positions in their sequences, some of the residues differing between the two proteins are critical for infection. To identify these, a series of hybrids and in vitro-constructed mutants were tested for the ability to confer susceptibility to infection. The results indicated that human GLVR1 residues 550 to 551, located in a cluster of seven of the sites that differ between the human and mouse proteins, are the only residues differing between the two which must be in the human protein form to allow infection. Sequencing of a portion of GLVR1 from the rat (which is infectible) confirmed the importance of this cluster in that it contained the only notable differences between the rat and mouse proteins. This region, which also differs substantially between the rat and the human proteins, therefore exhibits a pronounced tendency for polymorphism.  相似文献   

20.
Mei Y  Gao HB  Yuan M  Xue HW 《The Plant cell》2012,24(3):1066-1080
Armadillo repeat-containing proteins (ARCPs) are conserved across eukaryotic kingdoms and function in various processes. Regulation of microtubule stability by ARCPs exists widely in mammals and algae, but little is known in plants. Here, we present the functional characterization of an Arabidopsis thaliana ARCP, which was previously identified as Cellulose synthase-interactive protein1 (CSI1), and prove its crucial role in anther and root development. CSI1 is highly expressed in floral tissues, and knockout mutants of CSI1 (three allelic lines) accordingly exhibit defective anther dehiscence, which can be partially rescued by mammalian microtubule-stabilizer MAP4, suggesting that CSI1 functions by stabilizing the microtubular cytoskeleton. CSI1 binds microtubules in vitro, and immunofluorescence and coimmunoprecipitation studies confirmed the physical interactions between CSI1 and microtubules in vivo. Analysis using oryzalin, a microtubule-disrupting drug, further revealed the destabilized microtubules under CSI1 deficiency and confirmed the crucial role of CSI1 in microtubule stability. The dynamic change of CSI1 in response to dehydration strongly suggests the important function of CSI1 in dehydration-induced microtubule depolymerization and reorganization, which is crucial for anther development. These results indicate the pivotal role of CSI1 in anther development by regulating microtubule stability and hence cell morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号