首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.  相似文献   

2.
Living organisms constantly interact with their habitats, selectively taking up compounds from their surroundings to meet their particular needs but also excreting metabolic products and thus modifying their environment. The small size, ubiquity, metabolic versatility, flexibility, and genetic plasticity (horizontal transfer) of microbes allow them to tolerate and quickly adapt to unfavorable and/or changing environmental conditions. The consumption of resources and the formation of metabolic products by spatially separated microbial populations constitute the driving forces that lead to chemical gradient formation. Communication and cooperation, both within and among bacterial species, have produced the properties that give these organisms a selective advantage. Observations of a wide range of natural habitats have established that bacteria do not function as individuals; rather, the vast majority of bacteria in natural and pathogenic ecosystems live in biofilms, defined as surface-associated, complex aggregates of bacterial communities that are attached to solid substrates and embedded in a polymer matrix of their own production. The spatial configurations of biofilms reach levels of complexity nearing those of multicellular eukaryotes. Microbial consortia have played important roles throughout the history of life on Earth, from the microbial mats (a type of biofilm) that were probably the first ecosystems in the early Archean, to the complex microbiota of the intestinal tract of different animals.  相似文献   

3.
Mites are an important group of arthropod pests affecting crops, animals and humans. Despite this, detailed physiological studies on these organisms remain sparse due largely to their small size. Unifying models are required to draw together the diverse information from studies on different groups and species. This paper describes a model for digestion in the parasitic mite, Psoroptes ovis, the causative agent of psoroptic mange or sheep scab disease. The limited information about this species is supplemented with data from other acarines, especially house dust mites and ticks. We review the range of enzymes and allergens found in mites and consider their possible roles in digestion in mites, generally and in particular, P. ovis. Histological studies, enzyme biochemistry and molecular biology and experimental evidence suggest that P. ovis utilises a digestive system reliant upon acid peptidases functioning in a largely intracellular environment. The actions of the digestive enzymes are supplemented by the involvement of bacteria as potential direct and indirect sources of nutrition. It is possible that some extra-corporeal digestion also takes place. The interaction of bacteria and digestive enzymes on the skin surface of the sheep may be responsible for the excessive pathological reactions evident in clinical sheep scab.  相似文献   

4.
Phytochemicals: the good, the bad and the ugly?   总被引:2,自引:0,他引:2  
Molyneux RJ  Lee ST  Gardner DR  Panter KE  James LF 《Phytochemistry》2007,68(22-24):2973-2985
Phytochemicals are constitutive metabolites that enable plants to overcome temporary or continuous threats integral to their environment, while also controlling essential functions of growth and reproduction. All of these roles are generally advantageous to the producing organisms but the inherent biological activity of such constituents often causes dramatic adverse consequences in other organisms that may be exposed to them. Nevertheless, such effects may be the essential indicator of desirable properties, such as therapeutic potential, especially when the mechanism of bioactivity can be delineated. Careful observation of cause and effect, followed by a coordinated approach to identify the responsible entities, has proved extremely fruitful in discovering roles for phytochemical constituents. The process is illustrated by selected examples of plants poisonous to animals and include the steroidal alkaloid toxin of Veratrum californicum (Western false hellebore), piperidine alkaloids of Lupinus species (lupines), and polyhydroxy indolizidine, pyrrolizidine and nortropane alkaloids of Astragalus and Oxytropis species (locoweeds), Castanospermum australe (Moreton Bay chestnut) and Ipomoea species (morning glories).  相似文献   

5.
6.
Lipidomic analysis of bacterial plasmalogens   总被引:1,自引:0,他引:1  
Plasmalogens are a group of lipids with potentially important, and not yet fully known, functions in organisms from bacteria to protozoans, invertebrates, and mammals. They can protect cells against the damaging effects of reactive oxygen species, protect other phospholipids or lipoprotein particles against oxidative stress, and have been implicated as signaling molecules and modulators of membrane dynamics. They have been found in many anaerobic bacterial species, and their biosynthetic pathways differ in aerobic and anaerobic organisms. The use of advanced techniques permits the identification of not only plasmalogen classes but also their positional isomers and often also individual molecular species. This paper describes direct analyses of plasmalogens from natural sources, frequently very unusual, using electrospray ionization mass spectrometry in combination with high-performance liquid chromatography and/or shotgun lipidomics.  相似文献   

7.
Developing a statistical support system for environmental hazard evaluation   总被引:1,自引:1,他引:0  
Estimating the hazard or risk to both human health and the environment has been based almost exclusively on single species toxicity tests low in environmental realism and without validation of their accuracy in more complex systems. While this may be quite appropriate for humans in a large variety of circumstances, there is no substantive body of direct experimental evidence indicating that precise predictions of harm from hazardous materials can be extrapolated from single species laboratory tests (or even multispecies laboratory tests) to the more complex highly variable natural systems. Now added to the hazardous chemical assessment problem is the accidental or deliberate release of genetically engineered microorganisms into the environment that have the additional capability of multiplying and expanding their numbers and also transferring genetic information to other organisms. This paper focuses entirely on hazard evaluation for organisms other than humans, namely predicting the potential risk or probability of harm to natural systems based on laboratory toxicity testing using single species. Not only will the basic risk assessment strategy itself be examined but also the question of determining the statistical reliability of various extrapolations from one level of biological organization to another. ‘For every complex problem, there is a simple, direct solution ... and it is invariably wrong!’ H. L. Mencken  相似文献   

8.
Melanogenesis is a complex multistep process of high molecular weight melanins production by hydroxylation and polymerization of polyphenols. Melanins have a wide range of applications other than being a sun - protection pigment. Melanogenesis pathway exists from prokaryotes to eukaryotes. It has evolved over years owing to the fact that the melanin pigment has different roles in diverse taxa of organisms. Melanin plays a pivotal role in the existence of certain bacteria and fungi whereas in higher organisms it is a measure of protection against the harmful radiation. We have done a detailed study on various pathways known for melanin synthesis across species. It was divulged that melanin production is not restricted to tyrosine but there are other secondary metabolites that synthesize melanin in lower organisms. Furthermore the phylogenetic study of these paths was done to understand their molecular and cellular development. It has revealed that the melanin synthesis paths have co-evolved in several groups of organisms. In this study, we also introduce a method for the comparative analysis of a metabolic pathway to study its evolution based on similarity between enzymatic reactions.  相似文献   

9.
施永彬  李钧敏  金则新 《生态学报》2012,32(18):5846-5858
生态基因组学是一个整合生态学、分子遗传学和进化基因组学的新兴交叉学科。生态基因组学将基因组学的研究手段和方法引入生态学领域,通过将群体基因组学、转录组学、蛋白质组学等手段与方法将个体、种群及群落、生态系统不同层次的生态学相互作用整合起来,确定在生态学响应及相互作用中具有重要意义的关键的基因和遗传途径,阐明这些基因及遗传途径变异的程度及其生态和进化后果的特征,从基因水平探索有机体响应天然环境(包括生物与非生物的环境因子)的遗传学机制。生态基因组学的研究对象可以分为模式生物与非模式生物两大类。拟南芥、酿酒酵母等模式生物在生态基因组学领域发挥了重要作用。随着越来越多基因组学技术的开发与完善,越来越多的非模式生物生态基因组学的研究将为生态学的发展提供重要的理论与实践依据。生态基因组学最核心的方法包括寻找序列变异、研究基因差异表达和分析基因功能等方法。生态基因组学已广泛渗透到生态学的相关领域中,将会在生物对环境的响应、物种间的相互作用、进化生态学、全球变化生态学、入侵生态学、群落生态学等研究领域发挥更大的作用。  相似文献   

10.
How heat-shock proteins function in diverse organisms from diverseenvironments, and how this diversification has evolved, is anemerging focus of research on molecular chaperones. As molecularchaperones, heat-shock proteins play diverse cellular roles,typically in minimizing dysfunction that may occur when otherproteins are in non-native conformations. The standard aspectsof these roles in vitro, in isolated cells, and in typical modelorganisms in the laboratory are now well-established, as arethe ubiquity of heat-shock proteins in organisms, the rangeof stresses that induce heat-shock proteins, the major familiesof heatshock proteins, their expression in nature, and theirvariation along natural gradients of stress. These aspects mayno longer require extensive examination. By contrast, the frequencyof natural expression of heat-shock proteins, their exact physiologicalroles in stress tolerance at levels of biological organizationabove the cell, the exact molecular mechanisms by which heat-shockprotein expression and function has become tuned to the prevailinglevel of environmental stress, and the fitness consequencesof heat-shock protein expression in nature are among the numerousunresolved issues in this area.  相似文献   

11.
Communication among Oral Bacteria   总被引:22,自引:0,他引:22       下载免费PDF全文
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

12.
Communication among oral bacteria.   总被引:6,自引:0,他引:6  
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

13.
The potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long-standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell-to-cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro-droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long-term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high-throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater-based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria.  相似文献   

14.
Polyaromatic hydrocarbons (PAHs) are recognized as priority pollutants that can negatively impact the environment and human health. These chemicals enter the environment from both natural and anthropogenic sources where they can persist and cause detrimental effects to biological systems. Like with most other environmental pollutants, the most important mechanism by which PAHs are removed occurs through the activities of certain types of bacteria (i.e. the PAH degraders). In recent years we have dramatically increased our knowledge on the types of bacteria playing key roles in the removal of PAHs in the marine environment. However, there remains a lack of complete understanding regarding the full breadth of species and their ecological functioning in PAH removal from contaminated waters. This paper discusses efforts to identify new species of marine bacteria that degrade PAHs using a DNA-based targeted approach called stable-isotope probing (DNA-SIP). In addition to providing greater insight on the identity and functioning of the marine microbial world, this information is anticipated to enhance our design of more efficient ways in cleaning up marine hydrocarbon pollution.  相似文献   

15.
Interactions between mycorrhizal fungi and other soil organisms   总被引:12,自引:0,他引:12  
Mycorrhizal fungi interact with a wide range of other soil organisms, in the root, in the rhizosphere and in the bulk soil. These interactions may be inhibitory or stimulatory; some are clearly competitive, others may be mutualistic. Effects can be seen at all stages of the mycorrhizal fungal life-cycle, from spore population dynamics (predation, dispersal and germination) through root colonization to external hyphal growth. Two areas that seem likely to be of particular importance to the functioning of the symbiosis are the role of bacteria in promoting mycorrhiza formation and of soil animals in grazing the external mycelium. Mycorrhizal fungi also modify the interactions of plants with other soil organisms, both pathogens, such as root-inhabiting nematodes and fungi, and mutualists, notably nitrogen-fixing bacteria. These interactions are probably important both in natural ecosystems, where pathogens are increasingly recognized as playing controlling roles, and in agricultural systems, where mycorrhizas may be valuable in designing integrated systems of pest control and growth stimulation.  相似文献   

16.
In aquatic environments, biofouling is a natural process of colonization of submerged surfaces, either living or artificial, involving a wide range of organisms from bacteria to invertebrates. Antifouling can be defined as preventing the attachment of organisms onto surfaces. This article reviews the laboratory bioassays that have been developed for studying the control of algae and invertebrates by epibiosis (chemical ecology) and the screening of new active compounds (natural products and biocides) to inhibit settlement or adhesion, ie fouling-release coatings. The assays utilize a range of organisms (mainly marine bacteria, diatoms, algae, barnacles). The main attributes of assays for micro- and macroorganisms are described in terms of their main characteristics and depending on the biological process assessed (growth, adhesion, toxicity, behavior). The validation of bioassays is also discussed.  相似文献   

17.
Ecology and evolution of bacterial microdiversity   总被引:13,自引:0,他引:13  
Using high resolution molecular fingerprinting techniques like random amplification of polymorphic DNA, repetitive extragenic palindromic PCR and multilocus enzyme electrophoresis, a high bacterial diversity below the species and subspecies level (microdiversity) is revealed. It became apparent that bacteria of a certain species living in close association with different plants either as associated rhizosphere bacteria or as plant pathogens or symbiotic organisms, typically reflect this relationship in their genetic relatedness. The strain composition within a population of soil bacterial species at a given field site, which can be identified by these high resolution fingerprinting techniques, was markedly influenced by soil management and soil features. The observed bacterial microdiversity reflected the conditions of the habitat, which select for better adapted forms. In addition, influences of spatial separation on specific groupings of bacteria were found, which argue for the occurrence of isolated microevolution. In this review, examples are presented of bacterial microdiversity as influenced by different ecological factors, with the main emphasis on bacteria from the natural environment. In addition, information available from some of the first complete genome sequences of bacteria (Helicobacter pylori and Escherichia coli) was used to highlight possible mechanisms of molecular evolution through which mutations are created; these include mutator enzymes. Definitions of bacterial species and subspecies ranks are discussed in the light of detailed information from whole genome typing approaches.  相似文献   

18.
Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds   总被引:11,自引:0,他引:11  
A survey of antibiotic-producing bacteria from the microbial flora attached to seaweeds and the study of their antibiotic capacities were carried out. From 5 species of green and brown marine algae, 224 bacterial strains were isolated and tested for antibiotic production. A total of 38 strains displayed antibiotic activity, withEnteromorpha intestinalis being the source of the highest number of producer strains. All epiphytic bacteria with antibiotic activity were assigned to thePseudomonas-Alteromonas group. Antagonism assays among the isolates demonstrated that each producer strain inhibits the growth of the other producers, as well as of some nonproducer strains also isolated from seaweeds. Likewise, an autoinhibitory effect was observed in all antibiotic-producing strains. Antibacterial spectra of all the strains include activity againstStaphylococcus, Alcaligenes, Pseudomonas, Vibrio, Pasteurella, andAchromobacter. A preliminary characterization of the antibiotic substances produced by these epiphytic bacteria demonstrated that they are low molecular weight compounds, thermolabile, and anionic and are not affected by proteolytic enzymes. The role that these inhibitory substances can play in the natural environment is discussed.  相似文献   

19.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

20.
Microbial biofilms: from ecology to molecular genetics.   总被引:28,自引:0,他引:28  
Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号