首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.  相似文献   

2.
The endodermal epithelial thymus anlage develops in tight association with neural crest (NC)-derived mesenchyme. This epithelial-NC interaction is crucial for thymus development, but it is not known how NC supports thymus development or whether NC cells or their progeny make any significant contribution to the adult thymus. By nude mouse blastocyst complementation and by cell surface phenotype, we could previously separate thymus stroma into Foxn1-dependent epithelial cells and a Foxn1-independent mesenchymal cell population. These mesenchymal cells expressed vascular endothelial growth factor-A, and contributed to thymus vascularization. These data suggested a physical or functional association with thymic blood vessels, but the origin, location in the thymus, and function of these stromal cells remained unknown. Using a transgenic mouse expressing Cre recombinase in premigratory NC (Sox10-Cre), we have now fate-mapped the majority of these adult mesenchymal cells to a NC origin. NC-derived cells represent tightly vessel-associated pericytes that are sandwiched between endothelium and epithelium along the entire thymus vasculature. The ontogenetic, phenotypic, and positional definition of this distinct perivascular mesenchymal compartment provides a cellular basis for the role of NC in thymus development and possibly maintenance, and might be useful to address properties of the endothelial-epithelial barrier in the adult thymus.  相似文献   

3.
4.
The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.  相似文献   

5.
Taste buds are specialized epithelial cell clusters in the oral squamous cell epithelium. Although taste buds have been reported to renew rapidly, the mechanism of cell cycle control in these specialized structures remains unresolved. To clarify the cell cycle status and role of cyclin-dependent kinase inhibitors (CDKI) for cell cycle control in the taste buds, we analyzed cell proliferation activity using bromodeoxyuridine (BrdU) and Ki-67 immunostainings and the expression of the Cip/Kip family of CDKI (p21Cip1, p27Kip1, and p57Kip2) in the circumvallate papillae of mouse and hamster. BrdU-positive cells were detected in the basal layer of the oral epithelium. In the taste buds, Ki-67-positive cells were seen in the basal area, with only a very few positive cells in the taste buds. Both p21Cip1 and p27Kip1 positive cells were seen in the suprabasal layer of the non-gustatory oral epithelium. In the taste buds, stronger p27Kip1 staining was detected than in the non-gustatory epithelium. Western blotting analysis revealed that p27Kip1 was abundant in the mucosal tissues from circumvallate papillae. Thus, our study suggests that the taste bud cells except for basal cells are post-mitotic cells and that the cell cycle arrest associated with taste bud cell differentiation could be regulated predominantly by p27Kip1.  相似文献   

6.
7.
Immunoreactivity to neuron-specific enolase (NSE), a specific neuronal marker, and calcitonin gene-related peptide (CGRP) was localized in lingual taste papillae in the pigs. Sequential staining for NSE and CGRP by an elution technique allowed the identification of neuronal subpopulations. NSE-staining revealed a large neuronal network within the subepithelial layer of all taste papillae. NSE-positive fibers then penetrated the epithelium as isolated fibers, primarily in the foliate and circumvallate papillae, or as brush-shaped units formed by a multitude of fibers, especially in the fungiform papillae and in the apical epithelium of the circumvallate papilla. Taste buds of any type of taste papillae were found to express a dense subgemmal/intragemmal NSE-positive neuronal network. CGRP-positive nerve fibers were numerous in the subepithelial layer of all three types of taste papillae. In the foliate and circumvallate papillae, these fibers penetrated the epithelium to form extragemmal and intragemmal fibers, while in the fungiforms, they concentrated almost exclusively in the taste buds as intragemmal nerve fibers. Intragemmal NSE- and CGRP-positive fiber populations were not readily distinguishable by typical neural swellings as previously observed in the rat. The NSE-positive neuronal extragemmal brushes never expressed any CGRP-like immunoreactivity. Even more surprising, fungiform taste buds, whether richly innervated by or devoid of NSE-positive intragemmal fibers, always harboured numerous intragemmal CGRP-positive fibers. Consequently, NSE is not a general neuronal marker in porcine taste papillae. Our observations also suggest that subgemmal/intragemmal NSE-positive fibers are actively involved in synaptogenesis within taste buds. NSE-positive taste bud cells were found in all three types of taste papillae. CGRP-positive taste bud cells were never observed.  相似文献   

8.
For most species and gustatory papillae denervation resultsin a virtual disappearance of taste buds. This is not the casefor hamster fungiform papillae, which contain taste buds thatsurvive denervation. To characterize these taste buds, in thisstudy, counts and measurements were made of all buds on theanterior 3 mm of the hamster tongue at 36 or 91 days after resectingthe chorda/lingual nerve. Taste bud numbers were, at both timeperiods, unaffected by denervation. However, bud dimensionswere affected with denervated buds 25–30% smaller thancontrol ones. Counts of taste bud cells indicated that decreasesin bud size may result from shrinkage, but not a loss of cells.Tritiated thymidine autoradiography was used to evaluate whetherdenervation influences the mitotic activity or the migratorypattern of bud cells. For every animal, the average number oflabelled cells per bud was slightly lower on the denervatedthan the control side of the tongue. However, when labelledcell positions were evaluated at 0.25, 3 and 6 days after thymidine,the distances from the sides of the bud increased at increasingtimes after injection for both the innervated and the denervatedbuds. Stem cells were located laterally or basally in the bud.Labelled cells that migrated into the centers of the buds werefew and seen only at 6 days post-injection time in both controland experimental buds. The moderate effects of denervation ontaste bud sizes and mitotic activities may indicate a generalizedatrophy. Remarkably intact were taste bud numbers and the migratorypatterns of cells, features of anterior tongue taste buds inthe hamster that are relatively invulnerable to resection ofthe chorda /lingual nerve.  相似文献   

9.
Taste buds on the anterior part of the tongue develop in conjunction with epithelial-mesenchymal specializations in the form of gustatory (taste) papillae. Sonic hedgehog (Shh) and Bone Morphogenetic Protein 4 (BMP4) are expressed in developing taste papillae, but the roles of these signaling molecules in specification of taste bud progenitors and in papillary morphogenesis are unclear. We show here that BMP4 is not expressed in the early tongue, but is precisely coexpressed with Shh in papillary placodes, which serve as a signaling center for both gustatory and papillary development. To elucidate the role of Shh, we used an in vitro model of mouse fungiform papillary development to determine the effects of two functional inhibitors of Shh signaling: anti-Shh (5E1) antibody and cyclopamine. Cultured E11.5 tongue explants express Shh and BMP4(LacZ) in a pattern similar to that of intact embryos, localizing to developing papillary placodes after 2 days in culture. Tongues cultured with 5E1 antibody continue to express these genes in papillary patterns but develop more papillae that are larger and closer together than in controls. Tongues cultured with cyclopamine have a dose-dependent expansion of Shh and BMP4(LacZ) expression domains. Both antibody-treated and cyclopamine-treated tongue explants also are smaller than controls. Taken together, these results suggest that, although Shh is not involved in the initial specification of papillary placodes, Shh does play two key roles during pmcry development: (1) as a morphogen that directs cells toward a nonpapillary fate, and (2) as a mitogen, causing expansion of the interplacodal epithelium and underlying mesenchyme.  相似文献   

10.
Do Unique Proteins Exist in Taste Buds?   总被引:2,自引:1,他引:1  
Proteins in papillae on the bovine tongue were analyzed by semi-micro, polyacrylamide gel electrophoresis. All the proteins in the papillae with taste buds were observed to be common to proteins in the surrounding epithelium without taste buds. The protein band which was reported to form a weak complex with compounds called sweet by man was also found in all parts of the tongue epithelium. The receptor molecules for chemical stimuli may be distributed in all the cells of the tongue epithelium or the content of receptor molecules in taste bud papillae may be extremely low.  相似文献   

11.
12.
Apoptotic cells in the taste buds and epithelia of mouse circumvallate papillae after colchicine treatment were examined by the methods of in situ DNA nick-end labeling, immunocytochemistry, and electron microscopy. After colchicine treatment, numerous positive cells appeared in the taste buds by DNA nick-end labeling, and some epithelial cells in the basal and suprabasal layers in and around the circumvallate papillae also revealed positive staining. Condensed and fragmented nuclei with a high density were occasionally found in the taste bud cells and in the basal and suprabasal layer epithelial cells by electron-microscopic observation. An immunocytochemical reaction for tubulin revealed weak staining in taste bud cells, because of the depolymerization of microtubules, and a decrease of the microtubules in the taste bud cells was observed by electron microscopy. These results indicate that colchicine treatment of mice induces the apoptosis of taste bud and epithelial cells in the circumvallate papillae and dorsal epithelial cells around the circumvallate papillae.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) are essential for the survival of geniculate ganglion neurons, which provide the sensory afferents for taste buds of the anterior tongue and palate. To determine how these target-derived growth factors regulate gustatory development, the taste system was examined in transgenic mice that overexpress BDNF (BDNF-OE) or NT4 (NT4-OE) in basal epithelial cells of the tongue. Overexpression of BDNF or NT4 caused a 93 and 140% increase, respectively, in the number of geniculate ganglion neurons. Surprisingly, both transgenic lines had severe reduction in fungiform papillae and taste bud number, primarily in the dorsal midregion and ventral tip of the tongue. No alterations were observed in taste buds of circumvallate or incisal papillae. Fungiform papillae were initially present on tongues of newborn BDNF-OE animals, but many were small, poorly innervated, and lost postnatally. To explain the loss of nerve innervation to fungiform papillae, the facial nerve of developing animals was labeled with the lipophilic tracer DiI. In contrast to control mice, in which taste neurons innervated only fungiform papillae, taste neurons in BDNF-OE and NT4-OE mice innervated few fungiform papillae. Instead, some fibers approached but did not penetrate the epithelium and aberrant innervation to filiform papillae was observed. In addition, some papillae that formed in transgenic mice had two taste buds (instead of one) and were frequently arranged in clusters of two or three papillae. These results indicate that target-derived BDNF and NT4 are not only survival factors for geniculate ganglion neurons, but also have important roles in regulating the development and spatial patterning of fungiform papilla and targeting of taste neurons to these sensory structures.  相似文献   

14.
Calcitonin gene-related peptide-like and neuron-specific enolase-like immunoreactivity (CGRP-IR and NSE-IR) were surveyed immunohistochemically in the fungi-form, foliate and circumvallate papillae in rats. A dense CGRP-IR network (subgemmal and extragemmal) in the taste papillae is linked to the presence of taste buds, even though CGRP-IR fibers are rarely present in the taste buds. Three typical fiber populations were detected with these two markers. (a) A population of coarse NSE-IR intragemmal fibers characterized by thick neural swellings, never expressing CGRP-immunoreactivity. (b) A population of thin varicose intragemmal NSE/CGRP-IR fibers. (c) A population of subgemmal and extragemmal NSE-/CGRP-IR fibers that partly penetrated the epithelium. The common distribution of CGRP-IR and NSE-IR fibers at the base of taste buds, their differential distribution and morphology within taste buds, added to their restricted nature (gustatory or somatosensory) suggest that a population of CGRP-IR fibers undergoes a target-induced inhibition of its CGRP phenotype while entering the taste buds. The combined use of NSE and CGRP allowed a better characterization of nerve fibers within and between all three types of taste papillae. NSE was also a very good marker for a subtype of taste bud cells in the foliate and in the circumvallate papillae, but no such cells could be observed in the fungiform papillae.  相似文献   

15.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

16.
Summary A method to isolate taste buds from the foliate papillae of the rabbit tongue is described. The method comprises (a) separation of the epidermis from the dermal layer after treatment with dilute acetic acid, and (b) mechanical removal of the taste buds from the epithelium with the use of a surgical needle. The procedure yields taste buds that are morphologically well preserved, and in quantities sufficient to enable a detailed biochemical characterization. Preliminary tests have shown the taste buds to have biochemical properties clearly distinct from those of the adjacent epithelium. The method may provide a basis for studying the molecular mechanism of taste perception in greater detail.On leave of absence from the Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.  相似文献   

17.
In mammals, taste buds are maintained by continuous turnover of cells, even in adulthood. Cell proliferation and differentiation continue to produce taste cells, which express various genes related to taste reception. We found the co-expression of Sonic hedgehog (Shh) with Prox1 and that of Nkx2.2 with Mash1 in adult mouse taste buds. Whereas Prox1was expressed strongly in cells in the basal region of mouse taste buds where Shh was co-expressed, it was expressed weakly in almost all taste bud cells lacking Shh expression. At 0.5 day after birth, when taste cells have not yet differentiated, the expressions of Shh and Prox1 completely overlapped in the epithelium of circumvallate papillae. Nkx2.2 was observed in cells expressing Mash1, but not in cells expressing genes related to taste reception, such as gustducin and T1R3. Almost all fusiform cells expressing Mash1 co-expressed Nkx2.2, while the majority of round cells expressing Mash1 in the basal region of taste buds lacked Nkx2.2 expression.  相似文献   

18.
Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.  相似文献   

19.
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号