首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel transmission-based localized surface plasmon resonance (LSPR) fiber-optic probe has been developed to determine the heavy metal cadmium ion (Cd(II)) concentration. The LSPR sensor was constructed by immobilizing phytochelatins (PCs), (gammaGlc-Cys)(8)-Gly, onto gold nanoparticle-modified optical fiber (NM(Au)OF). The optimal immobilizing conditions of PCs on to the NM(Au)OF are 71.6mug/ml PCs in pH 7.4 PBS for 2h. The absorbability (change of light absorption) of the PC-functionalized NM(Au)OF sensor increases to 9% upon changing the Cd(II) level from 1 to 8ppb with a sensitivity of 1.24ppb(-1) and a detection limit of 0.16ppb. The sensor retained 85% of its original activity after nine cycles of deactivation and reactivations. In addition, the sensor retains its activity and gives reproducible results after storage in 5% d-(+)-trehalose dehydrate solution at 4 degrees C for 35 days. The dissociation constant (K(d)) of the immobilized PCs with Cd(II) was about 6.77x10(-8)M. In conclusion, the PCs-functionalized NM(Au)OF sensor can be used to determine the concentration of Cd(II) with high sensitivity.  相似文献   

2.
3.
We have developed a simple assay method for the evaluation of estrogen receptor (ER) binding capacity of chemicals without the use of radio- or fluorescence-labeled compounds. We used the solution competition assay by the BIACORE biosensor, a surface plasmon resonance biosensor, with estradiol as a ligand, human recombinant ER(alpha) (hrER(alpha)) as a high molecular weight (hmw) interactant and test chemicals as analytes. For the ligand, aminated estradiol with a spacer molecule (E2-17PeNH) was synthesized and immobilized on a carboxymethyl dextran-coated sensor chip by the amine coupling method. The injection of the hmw interactant hrER(alpha) to the biosensor raised the sensorgram, indicating its binding to the ligand E2-17PeNH. The binding of test chemicals to hrERalpha was determined as a reduction in the hrER(alpha) binding to E2-17PeNH. The dissociation constant for the binding to hrER(alpha) was calculated for estrone (4.29 x 10(-9)M), estradiol (4.04 x 10(-10)M), estriol (8.35 x 10(-10)M), tamoxifen (2.16 x 10(-8)M), diethylstilbestrol (1.46 x 10(-10)M), bisphenol A (1.35 x 10(-6)M) and 4-nonylphenol (7.49 x 10(-6)M), by plotting the data according to an equation based on mass action law. This method can also be used as a high throughput screening method.  相似文献   

4.
Liquid and gas chromatography are commonly used to measure organophosphorus pesticides. However, these methods are relatively time consuming and require a tedious sample pretreatment. Here, we applied the localized surface plasmon resonance (LSPR) of gold nanoparticles covalently coupled with acetylcholinesterase (AChE) to create a biosensor for detecting an example of serial signals responding to paraoxon in the range of 1-100 ppb by an AChE modified LSPR sensor immersing in a 0.05 mM ACh solution. The underlying mechanism is that paraoxon prevents acetylcholine chloride (ACh) reacting with AChE by destroying the OH bond of serine in AChE. We found that the AChE modified LSPR sensors prepared by incubation with 12.5 mU/mL of AChE in phosphate buffer solution at pH 8.5 room temperature for 14 h have the best linear inhibition response with a 0.234 ppb limit of paraoxon detection. A 14% of inhibition on the sensor corresponds to the change of paraoxon concentration from 1 to 100 ppb. The sensor remained 94% of its original activity after six cycles of inhibition with 500 ppb paraoxon followed with reactivation of AChE by 0.5 mM 2-pyriding-aldoxime methoiodide (2-PAM). In addition, the sensor retains activity and gives reproducible results after storage in dry state at 4 degrees C for 60 days. In conclusion, we demonstrated that the AChE modified LSPR sensors can be used to determine the concentration of paraoxon biosensor with high sensitive and stable characteristics.  相似文献   

5.
Survey of the 1999 surface plasmon resonance biosensor literature   总被引:7,自引:0,他引:7  
The application of surface plasmon resonance biosensors in life sciences and pharmaceutical research continues to increase. This review provides a comprehensive list of the commercial 1999 SPR biosensor literature and highlights emerging applications that are of general interest to users of the technology. Given the variability in the quality of published biosensor data, we present some general guidelines to help increase confidence in the results reported from biosensor analyses.  相似文献   

6.
In order to explore the clinical application of the nanobiosensor based on localized surface plasmon resonance (LSPR), we used our LSPR biosensor to detect the microalbuminuria in this work. The sliver nanoparticles were fabricated by using nanosphere lithography. The anti-human albumin antibody was immobilized on the sensor surface by amine coupling method. The different concentrations of commercial albumin and albumin in urine samples from three mild preeclampsia patients were determined according to the peak of LSPR extinction spectra. Under optimum conditions, our results showed that the biosensor displayed a detection limit of 1 ng/ml and wide dynamic range of 1 ng/ml to 1 μg/ml. Furthermore, the microalbuminuria of three patients was determined by our biosensor within a short assay time, without sample purification. This biosensor proposed herein is easy to prepare and could be used for low-cost, rapid, label-free, and sensitive screening of the microalbuminuria. This approach provides a promising platform for developing clinical diagnostic applications.  相似文献   

7.
A surface plasmon resonance array biosensor based on spectroscopic imaging   总被引:6,自引:0,他引:6  
We have developed a multi-element transduction system which combines conventional SPR spectroscopy with one-dimensional SPR microscopy to create an effective platform for monitoring binding events on macro- or micro-patterned receptor arrays created on disposable sensor chips. This creates an effective platform for monitoring simultaneous binding events on each of the regions patterned with the receptors. This system has been specifically designed with commercially available components to allow relatively easy duplication. Furthermore, this system can use a proven, simple method to compensate for changes in the bulk index of refraction of the solution containing the analytes due to changes in temperature or solute concentration with simple modifications to the sensor chips alone. Preliminary results demonstrate how this system can be used to monitor several independent biospecific binding events simultaneously.  相似文献   

8.
Cyclic heptapeptide microcystins are a group of hepatoxicants which exert the cytotoxic effects by inhibiting the catalytic activities of phosphatase-2A (PP-2A) and phosphatase-1 (PP-1) and thus disrupt the normal signal transduction pathways. Microcystins interact with PP-2A and PP-1 by a two-step mechanism involving rapid binding and inactivation of protein phosphatase catalytic subunit, followed by a slower covalent interaction. It was proposed that inactivation of PP-2A/PP-1 catalytic activity by microcystins precedes covalent adduct formation. In this study, we used a biosensor based on surface plasmon resonance (SPR) to examine the effects of three microcystins, MCLR, MCRR and MCYR, on the binding between PP-2A and its substrate, phosphorylase-a (PL-a), during the first step of the interaction. The SPR biosensor provides real-time information on the association and dissociation kinetics of PL-a with immobilized PP-2A in the absence and presence of microcystins. It was found that the affinity of PL-a to microcystin-bound PP-2A was four times smaller compared to unbound PP-2A, due to 50% decreases in the association rates and two-fold increases in dissociation rates of PL-a binding to PP-2A. The results suggest that the rapid binding of microcystins to the PP-2A catalytic site leads to the formation of a noncovalent microcystin/PP-2A adduct. While the adduct formation fully inhibits the catalytic activity of PP-2A, it only results in partial inhibition of the substrate binding. The similar effects of the three microcystins on PP-2A suggest that the toxins bind to PP-2A at the same site and cause similar conformational changes. The present work also demonstrates the potential application of biosensor technology in environmental toxicological research.  相似文献   

9.
There is an ongoing need for field-deployable biosensor devices. We have constructed a fully self-contained, hand-held biosensor, based on the surface plasmon resonance technique. The dimensions of the sensor unit are 15 x 8 cm, the weight is 600 g and it is powered by a 9 V battery. We have characterised the responsiveness of the sensor using calibrated sucrose solutions and were able to measure changes as small as 3.3 x 10(-6) refractive index units. To demonstrate functionality of the sensor, we have prepared surfaces with an antibody fragment specific for the biological toxin ricin. We were able to detect ricin at 200 ng/mL in 10 min, which is approximately 2500 times less than the minimum lethal dose. We were also able to verify positive binding within a second 10 min window. This sensor demonstrates important steps required for the development of fully integrated, hand-held sensor devices and will form the basis of a multi-analyte system, to be developed in the near future. It also represents the first completely hand-held SPR device, not requiring external power or a computer connection to operate.  相似文献   

10.
The arsRDABC operon of Escherichia coli plasmid R773 encodes the ArsAB pump that catalyzes extrusion of the metalloids As(III) and Sb(III), conferring metalloid resistance. The catalytic subunit, ArsA, is an ATPase with two homologous halves, A1 and A2, connected by a short linker. Each half contains a nucleotide binding domain. The overall rate of ATP hydrolysis is slow in the absence of metalloid and is accelerated by metalloid binding. The results of photolabeling of ArsA with the ATP analogue 8-azidoadenosine 5'-[alpha-(32)P]-triphosphate at 4 degrees C indicate that metalloid stimulation correlates with a >10-fold increase in affinity for nucleotide. To investigate the relative contributions of the two nucleotide binding domains to catalysis, a thrombin site was introduced in the linker. This allowed discrimination between incorporation of labeled nucleotides into the two halves of ArsA. The results indicate that both the A1 and A2 nucleotide binding domains bind and hydrolyze trinucleotide, even in the absence of metalloid. Sb(III) increases the affinity of the A1 nucleotide binding domain to a greater extent than the A2 nucleotide binding domain. The ATP analogue labeled with (32)P at the gamma position was used to measure hydrolysis of trinucleotide at 37 degrees C. Under these catalytic conditions, both nucleotide binding domains hydrolyze ATP, but hydrolysis in A1 is stimulated to a greater degree by Sb(III) than A2. These results suggest that the two homologous halves of the ArsA may be functionally nonequivalent.  相似文献   

11.
Surface plasmon resonance (SPR) biosensors recently gained an important place in drug discovery. Here we present a primary and secondary SPR biosensor screening methodology. The primary screening method is based on a direct binding assay with covalent immobilized drug target proteins. For the secondary screening method, a sequential competition assay has been developed where the captured protein is first exposed to an unknown test compound, followed directly by an exposure to a high-molecular-weight reporter ligand. Using the high-molecular-weight reporter ligand to probe the remaining free binding site on the sensor, a significant signal enhancement is obtained. Furthermore, this assay format allows the validation of the primary direct binding assay format, efficiently revealing false positive data. As a model system, acetylcholine binding protein (AChBP), which is a soluble model protein for neuronal nicotinic acetylcholine receptors, has been used. The secondary assay is lower in throughput than the primary assay; however, the signal-to-noise ratio is two times higher compared with the direct assay, and it has a z′ factor of 0.96. Using both assays, we identified the compound tacrine as a ligand for AChBP.  相似文献   

12.
13.
Summary By using a commercially available surface plasmon resonance (SPR) biosensor, the values of the association rate constant (kass), dissociation rate constant (kdiss), and association constant (KA = kass / kdiss) for binding to the antigens were determined. They were almost the same for the recombinant antibody expressed in COS cells, CHO cells, and mouse hybridoma cells. The system of transient expression of the recombinant antibody (Ab) in COS cells and SPR analysis of the supernatant should be useful for rapid expression and evaluation of the binding ability of large numbers of engineered Abs.  相似文献   

14.
The purpose of this study was to develop a biosensor based on surface plasmon resonance (SPR) for the rapid identification of C. jejuni in broiler samples. We examined the specificity and sensitivity of commercial antibodies against C. jejuni with six Campylobacter strains and six non-Campylobacter bacterial strains. Antigen-antibody interactions were studied using enzyme-linked immunosorbent assay (ELISA) and a commercially available SPR biosensor platform (Spreeta). Campylobacter cells killed with 0.5% formalin had significant lower antibody reactivity when compared to live cells, or cells inactivated with 0.5% thimerosal or heat (70 degrees C for 3 min) using ELISA. The SPR biosensor showed a good sensitivity with commercial antibodies against C. jejuni at 10(3) CFU/ml and a low cross reactivity with Salmonella serotype typhimurium. The sensitivity of the SPR was similar when testing spiked broiler meat samples. However, research is still needed to reduce the high background observed when sampling meat products.  相似文献   

15.
Considerable interest has been focused on telomerase because of its potential use in assays for cancer diagnosis, and for anti-telomerase drugs as a strategy for cancer chemotherapy. A number of assays based on the polymerase chain reaction (PCR) have been developed for evaluation of telomerase activity. To overcome the disadvantages of the conventional telomerase assay [telomeric repeat amplification protocol (TRAP)] related to PCR artifacts and troublesome post-PCR procedures, we have developed a telomeric repeat elongation (TRE) assay which directly measures telomerase activity as the telomeric elongation rate by biosensor technology using surface plasmon resonance (SPR). 5′-Biotinylated oligomers containing telomeric repeats were immobilized on streptavidin-pretreated dextran sensor surfaces in situ using the BIACORE apparatus. Subsequently, the oligomers associated with the telomerase extracts were elongated in the BIACORE apparatus. The rate of TRE was calculated by measuring the SPR signals. We examined elongation rates by the TRE assay in 18 cancer and three normal human fibroblast cell lines, and 12 human primary carcinomas and matching normal tissues. The elongation rates increased in a concentration- and time-dependent manner. Those of cancer cells were two to 10 times higher than fibroblast cell lines and normal tissues. Telomerase activities and its inhibitory effects of anti-telomerase agents as measured by both the TRE and TRAP assays showed a good correlation. Our assay allows precise quantitative comparison of a wide range of human cells from somatic cells to carcinoma cells. TRE assay is suitable for practical use in the assessment of telomerase activity in preclinical and clinical trials of telomerase-based therapies, because of its reproducibility, rapidity and simplicity.  相似文献   

16.
We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte (mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with antimouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.  相似文献   

17.
Sandwich and colloidal Au techniques for enhancing the sensitivity of a wavelength-modulation surface plasmon resonance (SPR) immunosensor are demonstrated by the detection of human complement factor 4 (C4). The design of the wavelength-modulation SPR biosensor is based on fixing the incident angle of light and measuring the reflected intensity of light in the wavelength range spanning 500-900 nm simultaneously. The human C4 had good response in the concentration range 2-20 microg/mL in the direct assay. However, in the sandwich assay, the human C4 had good response in the concentration range 0.2-20 microg/mL and the lowest concentration is 10-fold lower than that obtained by the direct assay. With human C4-Au colloidal conjugate, the human C4 had good response in the concentration range 0.1-20 microg/mL and the lowest concentration is 20-fold lower than that obtained by the direct assay. In the colloidal-Au-enhanced sandwich assay, the human C4 had good response in the concentration range 0.05-5 microg/mL and the lowest concentration is 40-fold lower than that obtained by the direct assay. Under selected experimental conditions, the reproducibility, sensitivity, and reversibility of the enhanced SPR immunoassay are very satisfactory. The results represent potentially significant advantages in the sensitivity of SPR biosensors.  相似文献   

18.

Background  

The topoisomerase I (TopI) reaction intermediate consists of an enzyme covalently linked to a nicked DNA molecule, known as a TopI-DNA complex, that can be trapped by inhibitors and results in failure of re-ligation. Attempts at new derivative designs for TopI inhibition are enthusiastically being pursued, and TopI inhibitors were developed for a variety of applications. Surface plasmon resonance (SPR) was recently used in TopI-inhibition studies. However, most such immobilized small molecules or short-sequence nucleotides are used as ligands onto sensor chips, and TopI was used as the analyte that flowed through the sensor chip.  相似文献   

19.
20.
In modern biomedical technology, development of high performance sensing methods for dopamine (DA) is a critical issue because of its vital role in human metabolism. We report here, a new kind of bioaffinity sensor for DA based on surface plasmon resonance (SPR) using a D(3) dopamine receptor (DA-RC) as a recognition element. A conjugate of DA was synthesized using bovine serum albumin (BSA) protein and was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The biosensor surface was constructed by the immobilization of the DA-BSA conjugate onto an SPR gold surface by physical adsorption. Atomic force microscopy (AFM) investigations revealed that the DA-BSA conjugate was homogeneously distributed over the sensor surface. Specific interaction of the DA-RC with the immobilized DA-BSA conjugate was studied by SPR. Based on the principle of indirect competitive inhibition, the biosensor could detect DA in a linear dynamic range from 85 pg/ml (ppt) to 700 ng/ml (ppb). The biosensor was highly specific for DA and showed no significant interference from potent interferences such as ascorbic acid (AA), uric acid (UA) and other DA analogues viz., 3,4 dihydroxyphenyl acetic acid (DOPAC) and 3-(3,4 dihydroxyphenyl)-alanine (DOPA). The sensor surface displayed a high level of stability during repeated regeneration and affinity reaction cycles. Since this biosensor is simple, effective and is based on utilization of natural receptor, our study presents an encouraging scope for development of portable detection systems for in-vitro and in-vivo measurement of DA in clinical and medical diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号