首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of ectomycorrhizal symbiosis leads to drastic changes in gene expression in both partners. However, little is known about the spatial regulation of symbiosis-regulated genes. Using cDNA array profiling, we compared the levels of expression of fungal genes corresponding to approximately 1,200 expressed sequenced tags in the ectomycorrhizal root tips (ECM) and the connected extraradical mycelium (EM) for the Paxillus involutus-Betula pendula ectomycorrhizal association grown on peat in a microcosm system. Sixty-five unique genes were found to be differentially expressed in these two fungal compartments. In ECM, a gene coding for a putative phosphatidylserine decarboxylase (Psd) was up-regulated by 24-fold, while genes coding for urea (Dur3) and spermine (Tpo3) transporters were up-regulated 4.1- and 6.2-fold in EM. Moreover, urea was the major nitrogen compound found in EM by gas chromatography-mass spectrometry analysis. These results suggest that (i) there is a spatial difference in the patterns of fungal gene expression between ECM and EM, (ii) urea and polyamine transporters could facilitate the translocation of nitrogen compounds within the EM network, and (iii) fungal Psd may contribute to membrane remodeling during ectomycorrhiza formation.  相似文献   

2.
Functional compartmentation of the extramatrical mycelium of ectomycorrhizal (ECM) fungi is considered important for the operation of ECM associations, although the molecular basis is poorly characterized. Global gene expression profiles of mycelium colonizing an ammonium sulphate ((NH4)2SO4) nutrient patch, rhizomorphs and ECM root tips of the Betula pendula-Paxillus involutus association were compared by cDNA microarray analysis. The expression profiles of rhizomorphs and nutrient patch mycelium were similar to each other but distinctly different from that of mycorrhizal tips. Statistical analyses revealed 337 of 1075 fungal genes differentially regulated among these three tissues. Clusters of genes exhibiting distinct expression patterns within specific tissues were identified. Genes implicated in the glutamine synthetase/glutamate synthase (GS/GOGAT) and urea cycles, and the provision of carbon skeletons for ammonium assimilation via beta-oxidation and the glyoxylate cycle, were highly expressed in rhizomorph and nutrient patch mycelium. Genes implicated in vesicular transport, cytoskeleton organization and morphogenesis and protein degradation were also differentially expressed. Differential expression of genes among the extramatrical mycelium and mycorrhizal tips indicates functional specialization of tissues forming ECM associations.  相似文献   

3.
A cDNA library of the ectomycorrhizal (ECM) fungus Pisolithus tinctorius Pt2 after interaction with the mycorrhiza helper bacterium (MHB) Brevibacillus reuszeri MPt17 was constructed by suppression subtraction hybridization. Total RNA from B. reuszeri MPt17 exudates treated Pi. tinctorius Pt2 was used as a “tester” and total RNA from nonbacterial treated Pi. tinctorius Pt2 was used as a “driver.” Among the differentially expressed sequences, a BLASTX in the NCBI non-redundant protein sequence database revealed that 75% of the non-redundant sequences (147 out of 196) were highly similar to known proteins (E-value < e?5). Twelve sequences were annotated as mycelium development function combining with a potential functional categories using gene ontology. Quantitative real-time PCR analysis showed that all of the 3 symbiosis regulated acidic polypeptide genes were all up-regulated in the MPt17-treated Pt2. These results provide evidence that the MHB B. reuszeri MPt17 could significantly change the expression of symbiosis-related genes and genes in mycelium development in ECM fungus, and also support the hypothesis that the MHB functions as helper though promotion on fungal mycelium.  相似文献   

4.
Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate.  相似文献   

5.
The ectomycorrhizal (ECM) fungus Hebeloma cylindrosporum is an appropriate model to study the intraspecific functional diversity of ECM fungi in forest ecosystems. Numerous metabolic genes, specifically genes related to nitrogen assimilation, have been characterised for this species and the spatial and temporal structures of its natural populations have been extensively worked out. In this paper, we reveal the extent to which intraspecific variation exists within this fungus for the ability to use organic nitrogen, an important functional characteristic of ECM fungi. In addition to ammonium and nitrate, H. cylindrosporum can use at least 13 different amino acids out of 21 tested as sole nitrogen source, as well as urea and proteins. By screening 22 genetically different wild type haploid strains we identified obvious differences in use of six nitrogen sources: alanine, glycine, phenylalanine, serine, bovine serum albumin and gelatine. Of the 22 haploid strains, 11 could not use at least one of these six nitrogen sources. The inability of some haploid strains to use a nitrogen source was found to be a recessive character. Nevertheless, obvious differences in use of the four amino acids tested were also measured between wild type dikaryons colonising a common Pinus pinaster root system. This study constitutes the basis for future experiments that will address the consequences of the functional diversity of an ECM fungus on the functioning of the ECM symbiosis under natural conditions.  相似文献   

6.
Soil humidity and bulk water transport are essential for nutrient mobilization. Ectomycorrhizal fungi, bridging soil and fine roots of woody plants, are capable of modulating both by being integrated into water movement driven by plant transpiration and the nocturnal hydraulic lift. Aquaporins are integral membrane proteins that function as gradient-driven water and/or solute channels. Seven aquaporins were identified in the genome of the ectomycorrhizal basidiomycete Laccaria bicolor and their role in fungal transfer processes was analyzed. Heterologous expression in Xenopus laevis oocytes revealed relevant water permeabilities for three aquaporins. In fungal mycelia, expression of the corresponding genes was high compared with other members of the gene family, indicating the significance of the respective proteins for plasma membrane water permeability. As growth temperature and ectomycorrhiza formation modified gene expression profiles of these water-conducting aquaporins, specific roles in those aspects of fungal physiology are suggested. Two aquaporins, which were highly expressed in ectomycorrhizas, conferred plasma membrane ammonia permeability in yeast. This indicates that these proteins are an integral part of ectomycorrhizal fungus-based plant nitrogen nutrition in symbiosis.  相似文献   

7.
8.
Several mechanisms may contribute to the high species richness often reported in ectomycorrhizal (ECM) fungal communities, including spatial and temporal partitioning. Here, we focus on temporal partitioning. Using molecular methods, we determined the frequencies of occurrence of ECM fungal species detected as hyphae and ECM roots in the forest floor of a Pinus resinosa plantation during a 13-month period. We then used a novel statistical procedure to place the most frequently occurring ECM fungal species into groups distinguished by their patterns of relative frequency over time. Three groups with contrasting temporal patterns were distinguishable for fungal species detected as hyphae. Two groups were distinguishable for species detected as ECM roots. Our results support the hypothesis that temporal partitioning occurs among the species of ECM fungi in this community, but we did not address its causes, which may have involved interactions among species' physiological tolerances, temporal environmental variability, temporal patterns of root production, and variation in fungal genet lifespan. These interactions should be the subjects of future research.  相似文献   

9.
The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography–tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development.  相似文献   

10.
Ectomycorrhizal fungi commonly associate with the roots of forest trees where they enhance nutrient and water uptake, promote seedling establishment and have an important role in forest nutrient cycling. Predicting the response of ectomycorrhizal fungi to environmental change is an important step to maintaining forest productivity in the future. These predictions are currently limited by an incomplete understanding of the relative significance of environmental drivers in determining the community composition of ectomycorrhizal (ECM) fungi at large spatial scales. To identify patterns of community composition in ECM fungi along regional scale gradients of climate and nitrogen deposition in Scotland, fungal communities were analysed from 15 seminatural Scots pine (Pinus sylvestris L.) forests. Fungal taxa were identified by sequencing of the ITS rDNA region using fungal‐specific primers. Nonmetric multidimensional scaling was used to assess the significance of 16 climatic, pollutant and edaphic variables on community composition. Vector fitting showed that there was a strong influence of rainfall and soil moisture on community composition at the species level, and a smaller impact of temperature on the abundance of ectomycorrhizal exploration types. Nitrogen deposition was also found to be important in determining community composition, but only when the forest experiencing the highest deposition (9.8 kg N ha?1 yr?1) was included in the analysis. This finding supports previously published critical load estimates for ectomycorrhizal fungi of 5–10 kg N ha?1 yr?1. This work demonstrates that both climate and nitrogen deposition can drive gradients of fungal community composition at a regional scale.  相似文献   

11.
12.
13.
The effects of spatial heterogeneity in negative biological interactions on individual performance and species diversity have been studied extensively. However, little is known about the respective effects involving positive biological interactions, including the symbiosis between plants and ectomycorrhizal (EM) fungi. Using a greenhouse bioassay, we explored how spatial heterogeneity of natural soil inoculum influences the performance of pine seedlings and composition of their root‐associated EM fungi. When the inoculum was homogenously distributed, a single EM fungal taxon dominated the roots of most pine seedlings, reducing the diversity of EM fungi at the treatment level, while substantially improving pine seedling performance. In contrast, clumped inoculum allowed the proliferation of several different EM fungi, increasing the overall EM fungal diversity. The most dominant EM fungal taxon detected in the homogeneous treatment was also a highly beneficial mutualist, implying that the trade‐off between competitive ability and mutualistic capacity does not always exist.  相似文献   

14.
Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremulaxtremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobin.  相似文献   

15.
One way to elucidate whether ammonium could act as a nitrogen (N) source delivered by the fungus in ectomycorrhizal symbiosis is to investigate plant ammonium importers. Expression analysis of a high-affinity ammonium importer from Populus tremulax tremuloides (PttAMT1.2) and of known members of the AMT1 gene family from Populus trichocarpa was performed. In addition, PttAMT1.2 function was studied in detail by heterologous expression in yeast. PttAMT1.2 expression proved to be root-specific, affected by N nutrition, and strongly increased in a N-independent manner upon ectomycorrhiza formation. The corresponding protein had a K(M) value for ammonium of c. 52 microm. From the seven members of the AMT1 gene family, one gene was exclusively expressed in roots while four genes were detectable in all poplar organs but with varying degrees of expression. Ectomycorrhiza formation resulted in a strong upregulation of three of these genes. Our results indicate an increased ammonium uptake capacity of mycorrhized poplar roots and suggest, together with the expression of putative ammonium exporter genes in the ectomycorrhizal fungus Amanita muscaria, that ammonium could be a major N source delivered from the fungus towards the plant in symbiosis.  相似文献   

16.
17.
Truffles are hypogeous ectomycorrhizal (EM) fungi belonging to the genus Tuber. Although outplanting of truffle-inoculated host plants has enabled the realization of productive orchards, truffle cultivation is not yet standardized. Therefore, monitoring the distribution of fungal species in different truffle fields may help us to elucidate the factors that shape microbial communities and influence the propagation and fruiting of Tuber spp. In this study, we compared the fungal biodiversity in cultivated and natural Tuber melanosporum truffle fields located in Central Italy. To this end, ectomycorrhizas (ECM) and soil samples were molecularly analyzed, and an inventory of the fungi associated with Quercus pubescens plants colonized by T. melanosporum, Tuber aestivum or Tuber brumale was compiled. T. melanosporum and T. aestivum were dominant on the cultivated plants, and the number of EM species was markedly lower in the cultivated sites than in the natural sites. However, in the same site, EM biodiversity was higher in T. brumale-colonized plants than in T. melanosporum-colonized plants. These results suggest that different Tuber spp. may have different competitive effects on the other mycobionts. Additionally, in keeping with our previous findings, we found that the number of T. melanosporum genotypes recovered from the soil samples was higher than that of the underlying ECM.  相似文献   

18.
Branco S 《Molecular ecology》2010,19(24):5566-5576
Serpentine soils impose physiological stresses that limit plant establishment and diversity. The degree to which serpentine soils entail constraints on other organisms is, however, poorly understood. Here, I investigate the effect of serpentine soils on ectomycorrhizal (ECM) fungi by conducting a reciprocal transplant experiment, where serpentine and nonserpentine ECM fungal communities were cultured in both their native and non-native soils. Contrary to expectation, serpentine soils hosted higher fungal richness compared to nonserpentine, and most species were recovered from serpentine soil, suggesting ECM fungi are not overall specialized or strongly affected by serpentine edaphic constraints.  相似文献   

19.
20.
Shrub abundance is expected to increase with enhanced temperature and nutrient availability in the Arctic, and associated changes in abundance of ectomycorrhizal (EM) fungi could be a key link between plant responses and longer-term changes in soil organic matter storage. This study quantifies the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production. We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site. This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has potential consequences for below-ground litter quality and quantity, and for accumulation of organic matter in arctic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号